给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
法一 动态规划
class Solution {
public:
int maxSubArray(vector<int>& nums) {
vector<int> dp(nums.size()+3,0);
dp[0] = nums[0];
for(int i=1;i<nums.size();i++)
dp[i] = max(nums[i],dp[i-1]+nums[i]);
int M =dp[0];
for(int i=1;i<nums.size();i++)
M = max(M,dp[i]);
return M;
}
};
法二:分治:
最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来
class Solution {
public:
int CAD(vector<int>& nums,int start,int end){
if(start == end) return nums[end];
if(start>end) return INT_MIN;
int mid = (start+end)/2;
int leftSum = CAD(nums,start,mid-1);
int rightSum = CAD(nums,mid+1,end);
int t1 = 0;
int sum1=0;
for(int i=mid-1;i>=start;i--){
t1 += nums[i];
sum1 = max(sum1,t1);
}
int t2 = 0;
int sum2=0;
for(int i=mid+1;i<=end;i++){
t2 += nums[i];
sum2 = max(sum2,t2);
}
return max(leftSum,max(rightSum,sum1+sum2+nums[mid]));
}
int maxSubArray(vector<int>& nums) {
if(nums.size()==1) return nums[0];
return CAD(nums,0,nums.size()-1);
}
};