leetcode 53. 最大子序和

53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

 

法一 动态规划

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int> dp(nums.size()+3,0);
        dp[0] = nums[0];
        for(int i=1;i<nums.size();i++)
            dp[i] = max(nums[i],dp[i-1]+nums[i]);
        int M =dp[0];
        for(int i=1;i<nums.size();i++)
            M = max(M,dp[i]);
        return M;
    }
};

法二:分治:

最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来

class Solution {
public:
    int CAD(vector<int>& nums,int start,int end){
        if(start == end) return nums[end];
        if(start>end) return INT_MIN;
        int mid = (start+end)/2;
        int leftSum = CAD(nums,start,mid-1);
        int rightSum = CAD(nums,mid+1,end);
        int t1 = 0;
        int sum1=0;
        for(int i=mid-1;i>=start;i--){
                t1 += nums[i];
                sum1 = max(sum1,t1);
        } 
        int t2 = 0;
        int sum2=0;
        for(int i=mid+1;i<=end;i++){
                t2 += nums[i];
                sum2 = max(sum2,t2);
        }    
        return max(leftSum,max(rightSum,sum1+sum2+nums[mid]));  
    }
    int maxSubArray(vector<int>& nums) {
        if(nums.size()==1) return nums[0];
        return CAD(nums,0,nums.size()-1);
    }
    
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值