给定一个非负整数数组 A,如果该数组每对相邻元素之和是一个完全平方数,则称这一数组为正方形数组。
返回 A 的正方形排列的数目。两个排列 A1 和 A2 不同的充要条件是存在某个索引 i,使得 A1[i] != A2[i]。
示例 1:
输入:[1,17,8]
输出:2
解释:
[1,8,17] 和 [17,8,1] 都是有效的排列。
示例 2:
输入:[2,2,2]
输出:1
提示:
1 <= A.length <= 12
0 <= A[i] <= 1e9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-squareful-arrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路: 实现全排列的参考 (sort + 确定位置)
去重思路:以[1,2,2]为例,可以要求index=1的数字2在最后生成的排列中一定要在index=2的数字2的前面,强制规定了顺序,避免了重复。即先从小到大排序,使相同的数字聚在一起,若前后2个数字相同,访问后一个数字的时候,前一个数字必须已经访问过了。只需添加一行代码
if(i>0&&nums[i]==nums[i-1]&&!visited[i-1]) continue;
https://blog.csdn.net/qq_31726419/article/details/78170055?locationNum=5&fps=1
在本题中 ,还要有一个剪枝,就是在 生成部分排列时候就用Judge()判断,如果不满足的话 就return
class Solution {
public:
int ans = 0;
bool Judge(vector<int> &tmp){
int len = tmp.size();
bool v = true;
for(int i=0;i<len-1;i++){
long sum = tmp[i] + tmp[i+1];
int t = sqrt(sum);
if(abs(t*t-sum)>=0.00000001 ){
v = false;
break;
}
}
/*if(v == true)
for(int i=0;i<tmp.size();i++)
cout<<tmp[i]<<" ";
cout<<endl;*/
return v;
}
void DFS(vector<int>& A,vector<bool>& vis,int index,vector<int> &tmp){
if(index == A.size()){
if(Judge(tmp))
ans++;
}
if(tmp.size()>=2 &&Judge(tmp)==false)
return ;
if(index >A.size())
return ;
for(int i=0;i<A.size();i++){
if(i>0&&A[i]==A[i-1]&&!vis[i-1]) continue;
if(vis[i]==false){
vis[i] = true;
tmp.push_back(A[i]);
DFS(A,vis,index+1,tmp);
tmp.pop_back();
vis[i] = false;
}
}
}
int numSquarefulPerms(vector<int>& A) {
sort(A.begin(),A.end());
vector<bool> vis(A.size(),false);
vector<int> tmp;
if(A.size()==0)
return 0;
DFS(A,vis,0,tmp);
return ans;
}
};