原题链接:https://www.acwing.com/problem/content/4522/
给定一个非负整数数组 A,如果该数组每对相邻元素之和是一个完全平方数,则称这一数组为正方形数组。
返回 A 的正方形排列的数目。
两个排列 A1 和 A2 不同的充要条件是存在某个索引 i,使得 A1[i]≠A2[i]。
输入格式
第一行包含一个整数 n,表示数组 A 的长度。
第二行包含 n 个整数 A[i]。
输出格式
一个整数,表示 AA 的正方形排列的数目。
数据范围
1≤n≤12
0≤A[i]≤109。
输入样例:
3
1 17 8
输出样例:
2
样例解释
[1,8,17][1,8,17] 都是有效的排列。
思路:
按照题意正方形数组的定义可知第一个数可以任意排列,后面的每一个数应该与左边的一个数形成完全平方数。由于n=12,数据规模比较小,DFS爆搜即可。像全排列问题一样一一枚举,用一个数组来储存该数是否使用过即可。
考虑去重:假设序列是 6 3 3 5。序列1:6 3(第一个三) 5 3(第二个三)与序列2:6 3(第二个三)5 3(第一个三)是一样的,不应计入结果。故应该使得相同的数字不能放在同一个位置(即同一层dfs上不能使用相同的数)。此时可以用排序过后,每个不同的区间都取最前面未被使用过的数填入即可。
AC代码
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int n,ans;
int a[15];
bool flag[15];
bool check(int x)
{
int r=sqrt(x);
return r*r==x;
}
void dfs(int u,int last)
{
if(u==n)
{
ans++;
return;
}
for(int i=0;i<n;i++)
{
if(flag[i]) continue;
if(i>0&&a[i]==a[i-1]&&!flag[i-1]) continue;
//如果前一个相同的数没有用过,说明已经被还原现场过了,即为在同一层dfs,该数已经用过了,所以不能再次计入
//如果前一个相同的数字用过了,是可以的,说明在不同层的dfs里,只是在不同位置填入相同的数而已
if(!check(a[i]+last)) continue;
flag[i]=true;
dfs(u+1,a[i]);
flag[i]=false;
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
sort(a,a+n);
for(int i=0;i<n;i++)
{
if(i>0&&a[i]==a[i-1]) continue;//第0个位置,不能填相同的数
flag[i]=true;//用过标记
dfs(1,a[i]);//开始爆搜
flag[i]=false;//还原现场
}
cout<<ans;
}