HDU 数论二 1002Ice Rain

参考博客 https://blog.csdn.net/acm_cxq/article/details/51627935

题目地址HDU 2620

题目大意 :给你 一个 n,k求 的值

题目思路:n,k的范围1 <= n, k <= 109 直接枚举肯定超时

                   利用mod 的本身定义 kmod i=k-[k/i]*i

 =n*k-(1*[k/1]+2*[k/2]+....+n*[k/n])

[k/i] 是取整的符号,所以说[k/i]到[k/n] 可能会有很多值相等的区间

设d=[k/i]   j=[k/d]  所以在[i,j]这个区间里面 【k/i】都等于d这样子就减少了很多枚举 下一次可以直接跳到 i=j+1

还可以证明这个 j一定是最后的一个 是的【k%j】=d

  我们假设k/(j+1)=d,那么有d(j+1)<=k  而根据k/d=j可以推出k-(d*j)<d即k<d*(j+1)

本题 注意点n,k数值很大所以要使用long long 类型

对于long long 类型 使用scanf("%lld")    printf("%lld")

#include<iostream>
using namespace std;
int main()
{
	long long  n,k;
	long long ans;
	while(cin>>n>>k)
	{
		ans=n*k;
		if(n>k) n=k;//当 n>k时 [k/n]=0
		for(int i=1;i<=n;)
		{
			long long d=k/i;
			long long j=k/d; 
			if(j>n) j=n;  
			ans=ans-d*(i+j)*(j-i+1)/2;
			i=j+1;
		}
		cout<<ans<<endl;
	}	
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值