参考博客 https://blog.csdn.net/acm_cxq/article/details/51627935
题目地址HDU 2620
题目大意 :给你 一个 n,k求 的值
题目思路:n,k的范围1 <= n, k <= 109 直接枚举肯定超时
利用mod 的本身定义 kmod i=k-[k/i]*i
=n*k-(1*[k/1]+2*[k/2]+....+n*[k/n])
[k/i] 是取整的符号,所以说[k/i]到[k/n] 可能会有很多值相等的区间
设d=[k/i] j=[k/d] 所以在[i,j]这个区间里面 【k/i】都等于d这样子就减少了很多枚举 下一次可以直接跳到 i=j+1
还可以证明这个 j一定是最后的一个 是的【k%j】=d
我们假设k/(j+1)=d,那么有d(j+1)<=k 而根据k/d=j可以推出k-(d*j)<d即k<d*(j+1)
本题 注意点n,k数值很大所以要使用long long 类型
对于long long 类型 使用scanf("%lld") printf("%lld")
#include<iostream>
using namespace std;
int main()
{
long long n,k;
long long ans;
while(cin>>n>>k)
{
ans=n*k;
if(n>k) n=k;//当 n>k时 [k/n]=0
for(int i=1;i<=n;)
{
long long d=k/i;
long long j=k/d;
if(j>n) j=n;
ans=ans-d*(i+j)*(j-i+1)/2;
i=j+1;
}
cout<<ans<<endl;
}
return 0;
}