智慧农业-高标准农田监管平台-遥感监测-AI识别
软件架构
软件架构说明
前端:vue/leaflet
后台:spring-boot
截图
-
耕地地块识别
2.作物面积分布
-
作物长势监测
-
后台管理系统
设计一套基于Spring Boot技术框架的AI识别的智慧农业监管平台,可以遵循以下步骤:
一、系统架构设计
智慧农业监管平台应采用“端+云”的网络架构,由智能终端和云平台两部分组成。智能终端负责采集各类数据,如土壤湿度、温度、光照、气象条件等,并通过无线或有线方式传输到云平台。云平台则负责数据的存储、处理和分析,以及提供用户友好的操作界面。
二、技术选型
-
后端框架:Spring Boot
-
前端框架:Vue.js(或根据需求选择其他前端框架)
-
数据库:MySQL(或其他关系型数据库)
-
通信协议:MQTT(用于智能终端与云平台之间的数据传输)
-
AI识别技术:利用深度学习等AI技术,对采集的图像数据进行识别和分析,如作物病虫害识别、作物生长状态评估等
三、功能模块设计
-
数据采集与存储:
-
在农田内部署各种传感器,实时监测环境数据。
-
利用传感器采集的数据,通过无线传输或有线接入传输到数据采集系统。
-
将采集的实时数据存储在云平台中,保证数据的安全性和可靠性。
-
-
AI识别与分析:
-
利用AI技术对采集的图像数据进行识别和分析,如作物病虫害识别、作物生长状态评估等。
-
根据识别结果,生成相应的决策报告和推荐措施,如病虫害防治建议、灌溉和施肥方案等。
-
-
远程监控与智能控制:
-
通过移动设备或电脑实时监控农田的状态和作物生长情况。
-
基于实时数据和AI识别结果,自动控制灌溉系统、温室环境控制系统等,优化资源利用和作物生长条件。
-
-
农产品追溯管理:
-
建立农产品追溯功能模块,提供农产品种植过程中的全过程记录和跟踪功能。
-
通过智能手机扫描农产品的追溯二维码等物联网手段,可查看该农产品生产的全面追溯信息,方便农产品安全监管。
-
-
用户界面与管理平台:
-
设计直观友好的用户界面,支持农场主或管理者查看数据、设置参数和接收报警信息。
-
整合各项功能于一个管理平台,便于用户综合管理和操作。
-
四、安全保障与隐私保护
-
确保数据传输和存储的安全性,采用加密技术保护敏感数据。
-
遵守相关法律法规,保护用户隐私和数据安全。
五、技术支持与培训服务
-
提供完善的技术支持和培训服务,帮助用户快速上手并充分利用平台功能。
-
持续优化平台性能,及时响应用户反馈和需求。
通过以上步骤,可以设计一套基于Spring Boot技术框架的AI识别的智慧农业监管平台,实现农业大面积的保险业务的有效管理和监控。
U2FsdGVkX1+NHghtZUMqa+U4zitAE0fAIScKSuuknbgh3qwxtO1RFmO/Hd7jmLjt
wi9tlKSnRapqyEdFsaZpboodLjyK00q2f4yv3OynPIOOnHRtP/jw2WDCR1tkCGgr