通过AI进行高标准农田监管平台

智慧农业-高标准农田监管平台-遥感监测-AI识别

软件架构

软件架构说明

   前端:vue/leaflet

  后台:spring-boot

截图

  1. 耕地地块识别

图片

2.作物面积分布

图片

  1. 作物长势监测

图片

  1. 后台管理系统

图片

设计一套基于Spring Boot技术框架的AI识别的智慧农业监管平台,可以遵循以下步骤:

一、系统架构设计

智慧农业监管平台应采用“端+云”的网络架构,由智能终端和云平台两部分组成。智能终端负责采集各类数据,如土壤湿度、温度、光照、气象条件等,并通过无线或有线方式传输到云平台。云平台则负责数据的存储、处理和分析,以及提供用户友好的操作界面。

二、技术选型

  • 后端框架:Spring Boot

  • 前端框架:Vue.js(或根据需求选择其他前端框架)

  • 数据库:MySQL(或其他关系型数据库)

  • 通信协议:MQTT(用于智能终端与云平台之间的数据传输)

  • AI识别技术:利用深度学习等AI技术,对采集的图像数据进行识别和分析,如作物病虫害识别、作物生长状态评估等

三、功能模块设计

  1. 数据采集与存储

    • 在农田内部署各种传感器,实时监测环境数据。

    • 利用传感器采集的数据,通过无线传输或有线接入传输到数据采集系统。

    • 将采集的实时数据存储在云平台中,保证数据的安全性和可靠性。

  2. AI识别与分析

    • 利用AI技术对采集的图像数据进行识别和分析,如作物病虫害识别、作物生长状态评估等。

    • 根据识别结果,生成相应的决策报告和推荐措施,如病虫害防治建议、灌溉和施肥方案等。

  3. 远程监控与智能控制

    • 通过移动设备或电脑实时监控农田的状态和作物生长情况。

    • 基于实时数据和AI识别结果,自动控制灌溉系统、温室环境控制系统等,优化资源利用和作物生长条件。

  4. 农产品追溯管理

    • 建立农产品追溯功能模块,提供农产品种植过程中的全过程记录和跟踪功能。

    • 通过智能手机扫描农产品的追溯二维码等物联网手段,可查看该农产品生产的全面追溯信息,方便农产品安全监管。

  5. 用户界面与管理平台

    • 设计直观友好的用户界面,支持农场主或管理者查看数据、设置参数和接收报警信息。

    • 整合各项功能于一个管理平台,便于用户综合管理和操作。

四、安全保障与隐私保护

  • 确保数据传输和存储的安全性,采用加密技术保护敏感数据。

  • 遵守相关法律法规,保护用户隐私和数据安全。

五、技术支持与培训服务

  • 提供完善的技术支持和培训服务,帮助用户快速上手并充分利用平台功能。

  • 持续优化平台性能,及时响应用户反馈和需求。

通过以上步骤,可以设计一套基于Spring Boot技术框架的AI识别的智慧农业监管平台,实现农业大面积的保险业务的有效管理和监控。

U2FsdGVkX1+NHghtZUMqa+U4zitAE0fAIScKSuuknbgh3qwxtO1RFmO/Hd7jmLjt
wi9tlKSnRapqyEdFsaZpboodLjyK00q2f4yv3OynPIOOnHRtP/jw2WDCR1tkCGgr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值