(1)
如何入门
(每个人都会有自己的入门方式,以下资源仅供参考)
|-- 通用
|-- 公开课资源
|-- coursera.org. 可以说是目前世界上最棒的公开课网站。
|-- 机器学习入门
|-- 书籍推荐
|-- 转自水木insomnia的 机器学习书单
|-- 机器视觉入门
|-- 本版讨论: http://bbs.byr.cn/#!article/ML_DM/10452
|-- 数据挖掘入门
|-- 社交网络入门
(2) 机器学习
|-- 基础概念
|-- 生成模型与判别模型: http://bbs.byr.cn/#!article/ML_DM/10643
|-- 线性分类器: http://bbs.byr.cn/#!article/ML_DM/10528
|-- 深度学习
|-- Deep Learning for NLP http://bbs.byr.cn/#!article/ML_DM/10792
|-- 概率图模型
(3) 机器视觉
(4) 社交网络/信息网络
(5) 实验室与导师
(以下列的实验室与导师绝对不全面,并且也不代表部分或全部权威)
|-- 北邮AI&PR&DM&ML老师介绍贴 http://bbs.byr.cn/#!article/ML_DM/95
(6) 交流
|-- 自我介绍 http://bbs.byr.cn/#!article/ML_DM/217
(每个人都会有自己的入门方式,以下资源仅供参考)
|-- 通用
|-- 公开课资源
|-- coursera.org. 可以说是目前世界上最棒的公开课网站。
|-- 机器学习入门
|-- 书籍推荐
|-- 转自水木insomnia的 机器学习书单
|-- 机器视觉入门
|-- 本版讨论: http://bbs.byr.cn/#!article/ML_DM/10452
|-- 数据挖掘入门
|-- 社交网络入门
(2) 机器学习
|-- 基础概念
|-- 生成模型与判别模型: http://bbs.byr.cn/#!article/ML_DM/10643
|-- 线性分类器: http://bbs.byr.cn/#!article/ML_DM/10528
|-- 深度学习
|-- Deep Learning for NLP http://bbs.byr.cn/#!article/ML_DM/10792
|-- 概率图模型
(3) 机器视觉
(4) 社交网络/信息网络
(5) 实验室与导师
(以下列的实验室与导师绝对不全面,并且也不代表部分或全部权威)
|-- 北邮AI&PR&DM&ML老师介绍贴 http://bbs.byr.cn/#!article/ML_DM/95
(6) 交流
|-- 自我介绍 http://bbs.byr.cn/#!article/ML_DM/217