Doris、Clickhouse、Tidb三者对比

本文将深入探讨Doris、Clickhouse和TiDB这三种数据库在处理大数据分析时的性能、特性及适用场景。通过对查询速度、扩展性、事务处理能力等方面的比较,揭示各自的优势与局限,帮助读者更好地理解如何选择适合自己的数据库解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序号 对比维度 类别 Doris Clickhouse TiDB
1

总体架构

Share-Nothing
2 列存
3 架构 内置分布式协议进行元数据同步
Master/Follower/Observer节点类型
依赖ZooKeeper进行DDL和Replica同步

开源分布式NewSQL数据库

Master/Slave

4 事务性 事务保证数据ACID 100万以内原子性,DDL无事务保证 事务保证数据ACID
5 数据规模 单集群 < 10PB 单集群 < 10PB
### Doris vs TiDB 性能对比分析报告 #### 硬件环境与测试背景 为了全面评估DorisTiDB的性能差异,测试基于相同的硬件配置下进行。具体硬件信息包括CPU型号、内存大小以及存储介质等细节[^1]。 #### 数据库设计目标与适用场景 Doris是一款专为商业智能(BI)打造的大规模并行处理(MPP)数据库系统,特别擅长于构建数据仓库和支持复杂的在线分析处理(OLAP)[^2]。而TiDB则定位为一款兼容MySQL协议的关系型分布式SQL数据库,旨在提供高可用性和水平扩展能力的同时保持ACID事务特性[^3]。 #### 查询性能表现 在标准TPC-H基准测试中,当涉及到大量复杂查询操作时,Doris展示了更快的速度优势,在某些特定查询条件下能够达到数倍乃至数十倍优于TiDB的表现。这主要得益于其优化过的执行计划生成器及高效的列存索引机制。 #### 处理大规模数据集的能力 面对海量级别的历史记录或日志文件等大容量静态数据集时,二者均表现出良好的读取吞吐量;但在增量更新频繁的小批量流式数据方面,由于采用了不同的架构设计理念——即MPP架构下的向量化计算模型vs. 分布式键值存储加两阶段提交协议——使得前者更胜一筹[^4]。 #### 并发访问控制策略 针对多用户并发请求情况下的锁竞争问题,TiDB凭借独特的乐观锁实现方式有效减少了死锁发生的概率,并且可以通过调整参数来平衡一致性和性能之间的关系。相比之下,虽然Doris同样具备一定的并发处理能力,但对于高度竞态条件下的事务管理稍显不足。 ```sql -- 示例:展示如何在一个小时内获取最近7天内每天的新注册用户数量统计 SELECT DATE_FORMAT(create_time, '%Y-%m-%d') AS date, COUNT(*) as new_users_count FROM users WHERE create_time >= NOW() - INTERVAL 7 DAY AND create_time < NOW() GROUP BY date; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢子墨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值