DAY21 超大力王爱学Python

from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 提取特征和目标变量
X = data.drop('target', axis=1)
y = data['target']

# 使用 t-SNE 进行降维
tsne = TSNE(n_components=2, random_state=42)
X_tsne = tsne.fit_transform(X)

# 使用 PCA 进行降维
pca = PCA(n_components=2, random_state=42)
X_pca = pca.fit_transform(X)

# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300

# 设置 matplotlib 支持中文
plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei']
plt.rcParams['axes.unicode_minus'] = False

# 创建画布
fig, axes = plt.subplots(1, 2, figsize=(12, 6))

# 绘制 t-SNE 可视化结果
axes[0].scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='viridis')
axes[0].set_title('t-SNE 可视化')
axes[0].set_xlabel('第一主成分')
axes[0].set_ylabel('第二主成分')

# 绘制 PCA 可视化结果
axes[1].scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis')
axes[1].set_title('PCA 可视化')
axes[1].set_xlabel('第一主成分')
axes[1].set_ylabel('第二主成分')

plt.tight_layout()
plt.show()

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值