青蛙的约会
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
Source
扩展欧几里德。由于两只青蛙所跳的步数是相同的,我们设其为s,则sm+x是青蛙A从坐标原点到终点所走的距离,sn+y是B走的距离,他们相减一定是地面周长的整数倍,设为k*l;则:(ms+x)-(ns+y)=kl,变形得:(n-m)s+lk=x-y。对于方程 a*x+b*y=n;有整数解得充分必要条件是(n %gcd(a,b)==0)。我们可以先用扩展欧几里德算法求出一组x0,y0。也就是a*x0+b*y0=gcd(a,b);然后两边同时除以gcd(a,b),再乘以n,这样就得到了方程 a*x0*n/gcd(a,b)+b*y0*n/gcd(a,b)=n;我们也就找到了方程的一个解。即x=x0*n/gcd(a,b) ;y=y0*n/gcd(a,b)。若gcd(a,b)=1,且x0,y0为a*x+b*y=n的一组解,则该方程的任一解可表示为:x=x0+b*t,y=y0-a*t;且对任一整数t,皆成立。但实际问题中,我们往往被要求去求最小整数解,所以我们就可以将一个特解x,t=c/gcd(a,b),x=(x%t+t)%t;就可以了。x就是所求的最小整数解。
代码如下:
#include<stdio.h>
long long X;
long long Y;
long long extgcd(long long a, long long b) {
long long d, t;
if (b == 0) {
X = 1;
Y = 0;
return a;
}
d = extgcd(b, a % b);
t = X - a / b * Y;
X = Y;
Y = t;
return d;
}
int main() {
long long x, y, m, n, l, d, r;
while (scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &l) == 5) {
d = extgcd(n - m, l);
r = l / d;
if ((x - y) % d)
printf("Impossible\n");
else
printf("%lld\n", ((x - y) / d * X % r + r) % r);
}
return 0;
}