畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 47922 Accepted Submission(s): 17820
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
题意就是,给你一个无向网,求两个点之间的最短带权路径长度。
那么很显然要用最短路做。最短路有很多算法,其中Floyd是最好理解,最容易实现的。但是其时间复杂度较高O(n^3),十分的高啊有木有。
值得庆幸的是本踢数据量并不大,所以用Flody “大丈夫”(没问题)
第一次看Floyd算法的时候,有种十分熟悉的感觉,艾玛,这不就是区间DP么。这让我高兴了一小会,因为我是先学DP再学树和图的。
下面放AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int dp[222][222];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i==j)
dp[i][j]=0;
else
dp[i][j]=INF;
}
}
int a,b,val;
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&a,&b,&val);
dp[a][b]=min(val,dp[a][b]);
dp[b][a]=min(val,dp[b][a]);
}
for(int k=0; k<n; k++)
{
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
dp[i][j]=min(dp[i][k]+dp[k][j],dp[i][j]);
}
}
}
int x,y;
scanf("%d%d",&x,&y);
if(dp[x][y]==INF)
printf("-1\n");
else
printf("%d\n",dp[x][y]);
}
return 0;
}
Floyd的思路就是,不断地枚举中间点,将两点之间的直接路径,分解成3个点的间接路径直至多个点的间接路径,取其最短的一种方案。
所以Floyd算法,耗时就耗在枚举上面,需要用3层n次的for循环。看来有空的话要学学别的最短路算法了……