牛顿迭代法

5 篇文章 0 订阅

//牛顿迭代法的实现

#include <iostream>
#include <math.h>
using namespace std;

double f(double x)
{
	return exp(x)+10*x-2;
}

double f1(double x)
{
	return exp(x)+10;
}

void NDDA(double x0,double e,int N)
{
	int k=1,I;
	double x1;
	while (k<N)
	{
		if(f1(x0)==0)
		{
			I=-1;
			cout<<"I="<<I<<"  因f'(x0)=0中断!"<<endl;
			break;
		}
		x1=x0-f(x0)/f1(x0);
		if(fabs(x1-x0)<e)
		{
			I=0;
			cout<<"I=0"<<"  可求得满足精度的根:"<<endl;
			cout<<"x1="<<x1<<","<<"f(x1)="<<f(x1)<<","<<"k="<<k<<endl;
			break;
		}
		x0=x1;
		k++;
	}
	if(k>N)
	{
		cout<<"I=1"<<"  迭代次数过多!"<<endl;
	}
}

int main()
{
	double x0,e;
	int N;
	cout<<"请输入初始值x0:";
	cin>>x0;
	cout<<"请输入允许误差e:";
	cin>>e;
	cout<<"请输入最大循环次数N:";
	cin>>N;
	NDDA(x0,e, N);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值