题意
4828: [Hnoi2017]大佬
Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 82 Solved: 47
[ Submit][ Status][ Discuss]
Description
Input
Output
共m行,如果能战胜第k个大佬(让他的自信值恰好等于0),那么第k行输出1,否则输出0。
Sample Input
22 18 15 16 20 19 33 15 38 49
92 14 94 92 66 94 1 16 90 51
4
5
9
338
5222
549
7491
9
123
3288
3
1
2191
833
3
6991
2754
3231
360
6
Sample Output
1
1
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
1
HINT
Source
这个题还是出的很好的,最重要的是从数据范围推出状态数不满这个事实,首先我们肯定要在活下来的前提下用尽可能多的时间来进行攻击,那么我们设 f [ i ] [ j ] f[i][j] f[i][j]为第 i i i天剩 j j j血量的时候最多能用多少天攻击,那么 d p dp dp一遍取最值就是我们攻击的天数,设这个最大天数为 d d d,我们令 d p [ i ] [ j ] dp[i][j] dp[i][j]表示讽刺度为 i i i,等级为 j j j的时候加上打出伤害所用的天数,这个东西 b f s bfs bfs转移就好了,这个东西实际上状态不满的,大概不超过 5 × 1 0 5 5×10^5 5×105个状态,我们用 m a p map map存就好了,得出所有的状态是一些二元组 ( f , D ) (f,D) (f,D), f f f代表伤害, D D D表示打出伤害的天数。然后因为题目有一个限制就是讽刺只能用 2 2 2次,所以我们枚举不用讽刺,讽刺用一次的情况,可以在 O ( O( O(状态数 ) ) )的时间内解决一次询问,然后讽刺用两次的情况我们可以对所有状态按 f f f排序,从大到小枚举,用一个单调的指针来维护,两次讽刺的伤害一定要小于等于其生命值,然后就可以了。
对于讽刺 2 2 2次的情况,假设我们枚举的状态为 j j j,指针目前指在 i i i状态,那么一定有 f i + f j < = c , d − D i − D j > = c − f i − f j , D i + D j < = d f_i+f_j<=c,d-D_i-D_j>=c-f_i-f_j,D_i+D_j<=d fi+fj<=c,d−Di−Dj>=c−fi−fj,Di+Dj<=d,我们可以发现第二个条件的限制比第三个条件要紧一些,那么我们可以不需要第三个条件,我们对第二个式子移项,可以得出 ( f i − D i ) + ( f j − D j ) > = c − D (f_i-D_i)+(f_j-D_j)>=c-D (fi−Di)+(fj−Dj)>=c−D,那么实际上由于 j j j是我们枚举的状态,所以我们只要记录 f i − D i f_i-D_i fi−Di的最大值就好了。
#include <bits/stdc++.h>
#define inf (0x3f3f3f3f)
#define ll long long
#define mp make_pair
#define pb push_back
#define x first
#define y second
using namespace std;
typedef pair<ll, int> PII;
const int N = 100 + 3;
vector<PII> vec;
map<PII, int> dp;
int f[N][N], a[N], w[N], c[N];
int n, m, q, mx, all, d = -inf;
template<class T>inline bool chkmax(T &_, T __) {return _ < __ ? _ = __, 1 : 0;}
void BFS(PII x) {
queue<PII> Q; dp[x] = 1;
for (Q.push(x); !Q.empty(); Q.pop()) {
PII k = Q.front(), to1 = mp(k.x, k.y + 1), to2 = mp(k.x * k.y, k.y);
vec.pb(mp(k.x, dp[k]));
if (dp[k] < d) {
if (!dp[to1]) dp[to1] = dp[k] + 1, Q.push(to1);
if (to2.x <= mx && !dp[to2]) dp[to2] = dp[k] + 1, Q.push(to2);
}
}
sort(vec.begin(), vec.end()), all = vec.size() - 1;
}
bool Solve(int x) {
if (d >= x) return 1;
for (int j = all, i = 0, bst = -inf; ~j; -- j) {
if (vec[j].x <= x && vec[j].x + d - vec[j].y >= x) return 1;
for (; i < all && vec[i].x + vec[j].x <= x; ++ i)
chkmax(bst, (int)vec[i].x - vec[i].y);
if (vec[j].x - vec[j].y + bst >= x - d) return 1;
}
return 0;
}
int main() {
#ifdef ylsakioi
freopen("3724.in", "r", stdin);
freopen("3724.out", "w", stdout);
#endif
scanf("%d%d%d", &n, &q, &m);
for (int i = 1; i <= n; ++ i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++ i)
scanf("%d", &w[i]);
for (int i = 1; i <= q; chkmax(mx, c[i ++]))
scanf("%d", &c[i]);
memset(f, -inf, sizeof(f)), f[0][m] = 0;
for (int i = 1; i <= n; ++ i) {
for (int j = a[i]; j <= m; ++ j) {
chkmax(f[i][j - a[i]], f[i - 1][j] + 1);
chkmax(f[i][min(m, j - a[i] + w[i])], f[i - 1][j]);
}
for (int j = 0; j <= m; ++ j)
chkmax(d, f[i][j]);
}
BFS(mp(1, 0));
for (int i = 1; i <= q; ++ i)
printf("%d\n", Solve(c[i]));
return 0;
}