今天考题有个结论要用排序不等式证明…
为什么他们猜到了结论我什么都不知道啊…
证明参考了https://blog.csdn.net/lanchunhui/article/details/52497375
排序不等式是干嘛的呢 首先有两个数列 a , b a, b a,b
满足 a 1 ≤ a 2 ≤ . . . ≤ a n , b 1 ≤ b 2 ≤ . . . ≤ b n a_1 \le a_2 \le ... \le a_n, b_1 \le b_2 \le ... \le b_n a1≤a2≤...≤an,b1≤b2≤...≤bn
满足顺序和 ≥ \ge ≥ 乱序和 ≥ \ge ≥ 逆序和
顺序和 = ∑ i = 1 n a i b i =\displaystyle\sum_{i = 1}^na_ib_i =i=1∑naibi
乱序和 = ∑ i = 1 n a i b p i =\displaystyle\sum_{i = 1}^na_ib_{p_i} =i=1∑naibpi 其中 p p p是 1 − n 1-n 1−n的一个排列
逆序和 = ∑ i = 1 n a i b n − i + 1 =\displaystyle\sum_{i = 1}^na_ib_{n - i + 1} =i=1∑naibn−i+1
先证明顺序和 ≥ \ge ≥ 乱序和
设 s k = ∑ i = 1 k b i , s k ′ = ∑ i = 1 k b p i s_k = \displaystyle\sum_{i = 1}^kb_i, s'_k = \sum_{i = 1}^kb_{p_i} sk=i=1∑kbi,sk′=i=1∑kbpi
那么有 s k ≤ s k ′ , s n = s n ′ s_k \le s'_k, s_n = s'_n sk≤sk′,sn=sn′ 这个 比较显然 最小的几个肯定比任选几个小
又因为 a i − a i + 1 ≤ 0 a_i - a_{i + 1} \le 0 ai−ai+1≤0
那么 s i ( a i − a i + 1 ) ≥ s i ′ ( a i − a i + 1 ) s_i(a_i - a_{i + 1}) \ge s'_i(a_i - a_{i + 1}) si(ai−ai+1)≥si′(ai−ai+1)
对于顺序和的每一项我们可以用 a i ( s i − s i − 1 ) a_i(s_i- s_{i - 1}) ai(si−si−1)表示出来
那么 ∑ i = 1 n a i b i = ∑ i = 1 n a i ( s i − s i − 1 ) = ∑ i = 1 n − 1 s i ( a i − a i + 1 ) + a n s n \displaystyle\sum_{i = 1}^na_ib_i = \sum_{i = 1}^na_i(s_i - s_{i - 1})=\sum_{i = 1}^{n - 1}s_i( a_i-a_{i + 1}) + a_ns_n i=1∑naibi=i=1∑nai(si−si−1)=i=1∑n−1si(ai−ai+1)+ansn
同理乱序和 = ∑ i = 1 n − 1 s i ′ ( a i − a i + 1 ) + a n s n ′ =\displaystyle\sum_{i = 1}^{n - 1}s'_i(a_i - a_{i + 1}) + a_ns'_n =i=1∑n−1si′(ai−ai+1)+ansn′
由于正序和每一项都大于等于乱序和 所以正序和大于等于乱序和得证
乱序和大于等于逆序和也可以用这个方法证明。