排序不等式证明

今天考题有个结论要用排序不等式证明…

为什么他们猜到了结论我什么都不知道啊…

证明参考了https://blog.csdn.net/lanchunhui/article/details/52497375

排序不等式是干嘛的呢 首先有两个数列 a , b a, b a,b

满足 a 1 ≤ a 2 ≤ . . . ≤ a n , b 1 ≤ b 2 ≤ . . . ≤ b n a_1 \le a_2 \le ... \le a_n, b_1 \le b_2 \le ... \le b_n a1a2...an,b1b2...bn

满足顺序和 ≥ \ge 乱序和 ≥ \ge 逆序和

顺序和 = ∑ i = 1 n a i b i =\displaystyle\sum_{i = 1}^na_ib_i =i=1naibi

乱序和 = ∑ i = 1 n a i b p i =\displaystyle\sum_{i = 1}^na_ib_{p_i} =i=1naibpi 其中 p p p 1 − n 1-n 1n的一个排列

逆序和 = ∑ i = 1 n a i b n − i + 1 =\displaystyle\sum_{i = 1}^na_ib_{n - i + 1} =i=1naibni+1

先证明顺序和 ≥ \ge 乱序和

s k = ∑ i = 1 k b i , s k ′ = ∑ i = 1 k b p i s_k = \displaystyle\sum_{i = 1}^kb_i, s'_k = \sum_{i = 1}^kb_{p_i} sk=i=1kbi,sk=i=1kbpi

那么有 s k ≤ s k ′ , s n = s n ′ s_k \le s'_k, s_n = s'_n sksk,sn=sn 这个 比较显然 最小的几个肯定比任选几个小

又因为 a i − a i + 1 ≤ 0 a_i - a_{i + 1} \le 0 aiai+10

那么 s i ( a i − a i + 1 ) ≥ s i ′ ( a i − a i + 1 ) s_i(a_i - a_{i + 1}) \ge s'_i(a_i - a_{i + 1}) si(aiai+1)si(aiai+1)

对于顺序和的每一项我们可以用 a i ( s i − s i − 1 ) a_i(s_i- s_{i - 1}) ai(sisi1)表示出来

那么 ∑ i = 1 n a i b i = ∑ i = 1 n a i ( s i − s i − 1 ) = ∑ i = 1 n − 1 s i ( a i − a i + 1 ) + a n s n \displaystyle\sum_{i = 1}^na_ib_i = \sum_{i = 1}^na_i(s_i - s_{i - 1})=\sum_{i = 1}^{n - 1}s_i( a_i-a_{i + 1}) + a_ns_n i=1naibi=i=1nai(sisi1)=i=1n1si(aiai+1)+ansn

同理乱序和 = ∑ i = 1 n − 1 s i ′ ( a i − a i + 1 ) + a n s n ′ =\displaystyle\sum_{i = 1}^{n - 1}s'_i(a_i - a_{i + 1}) + a_ns'_n =i=1n1si(aiai+1)+ansn

由于正序和每一项都大于等于乱序和 所以正序和大于等于乱序和得证

乱序和大于等于逆序和也可以用这个方法证明。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值