第四十三周学习笔记

第四十三周学习笔记

论文阅读

  • ImageNet Classification with Deep Convolutional Neural Networks,提出了AlexNet,在ImageNet上首度超过传统方法
  • ROUGE: A Package for Automatic Evaluation of Summaries,一个基于recall的nlg度量
  • CIDEr: Consensus-based Image Description Evaluation,基于相似度的nlg度量,同时考虑了recall和precision

AlexNet on CIFAR10

具体实现采用了现代网络设方法,与原版不同之处有:

  • 原版在两个GPU上训练两个网络,并在中间某些层设置了两个网络的连接,这里只用一个网络
  • 原版有response local normalization,这里没有使用
  • 原版的最大池化是overlapping的kernel=3,stide=2的池化,这里直接22

最佳测试误差为78.06%
在这里插入图片描述

Faegen

详见excel

本周小结

  • 论文阅读数3,少两篇

下周计划

  • 论文阅读
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值