PaddlePaddle第二周学习笔记

  • 项目一:使用飞浆完成手写数字识别模型
    • MNIST数据集
      • MNIST数据集是从NIST的Special Database 3(SD-3)和Special Database 1(SD-1)构建而来。

    • 构建手写数字识别的神经网络模型
    • 飞桨各模型代码结构一致,大大降低了用户的编码难度
    • 教程采用"横纵式"教学法,适用于深度学习初学者
  • 项目二:通过极简方案快速构建手写数字识别模型
    • 加载飞桨与手写数字识别模型相关的类库
    • 数据处理
      • 飞桨提供了多个封装好的数据集API,涵盖计算机视觉、自然语言处理、推荐系统等多个领域,帮助读者快速完成深度学习任务。
        • mnist
        • cifar
        • Conll05
        • imdb
        • imikolov
        • movielens
        • sentiment
        • uci_housing
        • wmt14
        • wmt16
      • 手写数字识别任务中,通过paddle.dataset.mnist可以直接获取处理好的MNIST训练集、测试集
      • 通过paddle.dataset.mnist.train()函数设置数据读取器,batch_size设置为8,即一个批次有8张图片和8个标签
    • 飞桨API的使用方法
      • 飞桨API文档获取方式
        • 登录“飞桨官网->文档->API Reference
        • 通过搜索和分类浏览两种方式查阅API文档
      • API文档使用方法
        • 飞桨每个API的文档结构一致,包含接口形式、功能说明和计算公式、参数和返回值、代码示例
    • 模型设计
      • 输入像素的位置排布信息对理解图像内容非常重要(如将原始尺寸为28*28图像的像素按照7*112的尺寸排布,那么其中的数字将不可识别),因此网络的输入设计为28*28的尺寸,而不是1*784,以便于模型能够正确处理像素之间的空间信息。
      • 事实上,采用只有一层的简单网络(对输入求加权和)时并没有处理位置关系信息,因此可以猜测出此模型的预测效果有限。在后续优化环节中,介绍的卷积神经网络则更好的考虑了这种位置关系信息,模型的预测效果也会显著提升
    • 训练配置
      • 训练配置需要先生成模型实例(设为“训练”状态),再设置优化算法和学习率(使用随机梯度下降SGD,学习率设置为0.001)
    • 训练过程
      • 训练过程采用二层循环嵌套方式,训练完成后需要保存模型参数,以便后续使用。
        • 内层循环:负责整个数据集的一次遍历,遍历数据集采用分批次(batch)方式。
        • 外层循环:定义遍历数据集的次数,本次训练中外层循环10次,通过参数EPOCH_NUM设置。
    • 模型测试
      • 声明实例
      • 加载模型:加载训练过程中保存的模型参数。
      • 灌入数据:将测试样本传入模型,模型的状态设置为校验状态(eval),显式告诉框架我们接下来只会使用前向计算的流程,不会计算梯度和梯度反向传播。
      • 获取预测结果,取整后作为预测标签输出。
      • 在模型测试之前,需要先从'./work/example_0.jpg'文件中读取样例图片,并进行归一化处理。
  • 项目三:【手写数字识别】之数据处理
    • 前提条件
      • 在数据读取与处理前,首先要加载飞桨和数据处理库
    • 读入数据并划分数据集
      • MNIST数据集以json格式存储在本地,其数据存储结构

      • data包含三个元素的列表:train_set、val_set、 test_set,包括50000条训练样本,10000条测试样本,共60000条数据。每个样本包含手写数字图片和对应的标签
        • train_set(训练集):用于确定模型参数。
          • train_images:[50000, 784]的二维列表,包含50000张图片。每张图片用一个长度为784的向量表示,内容是28*28尺寸的像素灰度值(黑白图片)。
          • train_labels:[50000, ]的列表,表示这些图片对应的分类标签,即0-9之间的一个数字。
        • val_set(验证集):用于调节模型超参数(如多个网络结构、正则化权重的最优选择)。
        • test_set(测试集):用于估计应用效果(没有在模型中应用过的数据,更贴近模型在真实场景应用的效果)。
    • 为什么学术界的模型总在不断精进呢?
      • 假设所有论文共产生1000个模型,这些模型使用的是测试数据集来评判模型效果,并最终选出效果最优的模型。这相当于把原始的测试集当作了验证集,使得测试集失去了真实评判模型效果的能力
      • 当几个模型的准确率在测试集上差距不大时,尽量选择网络结构相对简单的模型。往往越精巧设计的模型和方法,越不容易在不同的数据集之间迁移。
    • 训练样本乱序、生成批次数据
      • 训练样本乱序: 先将样本按顺序进行编号,建立ID集合index_list。然后将index_list乱序,最后按乱序后的顺序读取数据。
        • 通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。
      • 生成批次数据: 先设置合理的batch_size,再将数据转变成符合模型输入要求的np.array格式返回。同时,在返回数据时将Python生成器设置为yield模式,以减少内存占用。
    • 校验数据有效性
      • 在实际应用中,原始数据可能存在标注不准确、数据杂乱或格式不统一等情况。因此在完成数据处理流程后,还需要进行数据校验
        • 机器校验:加入一些校验和清理数据的操作。
        • 人工校验:先打印数据输出结果,观察是否是设置的格式;再从训练的结果验证数据处理和读取的有效性
    • 封装数据读取与处理函数
      • 从读取数据、划分数据集、到打乱训练数据、构建数据读取器以及数据校验,完成了一整套一般性的数据处理流程,下面将这些步骤放在一个函数中实现,方便在神经网络训练时直接调用。
      • 下面定义一层神经网络,利用定义好的数据处理函数,完成神经网络的训练。
    • 异步数据读取
      • 同步数据读取:数据读取与模型训练串行。当模型需要数据时,才运行数据读取函数获得当前批次的数据。在读取数据期间,模型一直等待数据读取结束才进行训练,数据读取速度相对较慢。
      • 异步数据读取:数据
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值