可控硅参数说明

光耦可控硅触发电路需要注意的几个要素:

1/        光耦的导通电流IF,计算R2。

2/        门极触发电压VGT,不能太高,R1/R3分压。

3/        门极触发电流IGT,不能太高,R1限流,R3分流。

4/        R1/R3的计算还要考虑负载阻抗。

5/        可控硅根据负载选择合适的缓冲电路。

电路如图所示,

图中ELM3052为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR并且起到隔离的作用,R1为触发限流电阻,R3为BCR门极电阻,防止误触发,提高抗干扰能力。当单片机的I/O引脚输出负脉冲信号时U1导通,ELM3052导通,触发BCR导通,接通交流负载。另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el作用,使得双向可控硅承受的电压值远远超过电源电压。虽然双向可控硅反向导通,但容易击穿,故必须使双向可控硅能承受这种反向电压。一般在双向可控硅两极间并联一个RC阻容吸收电路,实现双向可控硅过电压保护,上图中的C1、R4为RC阻容吸收电路。

                                                        ELM3052参数如下

查看参数表可知LED导通电流10mA,导通压降1.2V。那么导通段电阻为R2= (5-1.2)V/10ma。

输出电流最大为1a,R1电阻为220*1.414/1a≈311Ω。

可控硅参数说明及中英文对照表

VDRMRepetitive peak off-state voltage断态重复峰值电压断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压DRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%.断态不重复峰值电压应低于正向转折电压bo,所留裕量大小由生产厂家自行规定。UU
VRRM反向重复峰值电压在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。
IT(RMS)On-State RMS Current (full sine wave)通态电流均方值-A
IGTTriggering gate current门极触发电流为了使可控硅可靠触发,触发电流Igt选择25度时max值的α倍,α为门极触发电流—结温特性系数,查数据手册可得,取特性曲线中最低工作温度时的系数。若对器件工作环境温度无特殊需要,通常选型时α取大于1.5倍即可。mA
VTMPeak Forward On-State Voltage通态峰值电压它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅V
VGTTriggering gate voltage门极触发电压—可以选择Vgt 25度时max值的β倍。β为门极触发电压—结温特性系数,查数据手册可得,取特性曲线中最低工作温度时的系数。若对器件工作环境温度无特殊需要,通常选择时β取1~1.2倍即可。V
VGDNon-triggering gate voltage门极不触发电压-V
IDRMMaximum forward or reverse leakage current断态重复峰值漏电流为晶闸管在阻断状态下承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时流过元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出。mA
IRRMMaximum reverse leakage current反向重复峰值漏电流mA
IHHolding Current维持电流维持可控硅维持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。mA

R3阻值 = 可控硅导通的最低压降 / 光耦导通的电流,稍取大一些

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值