【0815*】Deep Hyperspherical Learning

这篇2017年的论文探讨了深度学习中参数过多的问题。研究发现,仅使用傅立叶变换的相位信息就能重构图像轮廓,暗示角度可能蕴含大量判别信息。方法是将卷积层特征替换为与卷积核的角度,但这种方法的合理性受到质疑。结论部分提到了使用测地距离和傅立叶变换进行解释。
摘要由CSDN通过智能技术生成

今天呀

Deep Hyperspherical Learning

论文在这里
挂在arxiv上了,2017年的论文


Intuition

要解决的问题:CNN参数过多,训练困难。

一个有意思的解释的角度:经过傅立叶变换后,分别用幅度项和相位项反变换,发现只用幅度项反变换会的图像根本不可辨认,但是只用相位项反变换回的图像就可以看出是什么东西(颜色很怪,但是轮廓是可以辨认的)。根据这个观测,发现实际上角度可能包含更多判别信息。

Method

不太有意思。就是把每层的特征都换成了与卷积核之间的的角度。我有点儿怀疑这么做是否合理。

Conclusion

我确实没有太仔细看。

有趣的地方:

  • 用测地距离解释。
  • 用傅立叶变换和反变换解释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值