今天呀
Deep Hyperspherical Learning
论文在这里
挂在arxiv上了,2017年的论文
Intuition
要解决的问题:CNN参数过多,训练困难。
一个有意思的解释的角度:经过傅立叶变换后,分别用幅度项和相位项反变换,发现只用幅度项反变换会的图像根本不可辨认,但是只用相位项反变换回的图像就可以看出是什么东西(颜色很怪,但是轮廓是可以辨认的)。根据这个观测,发现实际上角度可能包含更多判别信息。
Method
不太有意思。就是把每层的特征都换成了与卷积核之间的的角度。我有点儿怀疑这么做是否合理。
Conclusion
我确实没有太仔细看。
有趣的地方:
- 用测地距离解释。
- 用傅立叶变换和反变换解释。