【读论文0702】Learning to Segment the Tail

Learning to Segment the Tail

论文地址
code
发表年份:CVPR2020


论文内容

Intuition

解决问题:分割。
对于长尾数据,类别样本分布不平衡。那很直接的想法就是把不同类的样本分成均衡的就行了,不过这样一分,样本就会很少,就变成了fewshot learning。然后看看这个论文怎么解决的。
这个想法是很容易想到的呀,就是具体操作不太好设计。前几天看的那个Balanced Group Softmax还有个multi-experts[ECCV2020]也是这个思路。

从Intro看,也有点儿像meta-learning。

具体方法

Class-Incremental Instance Segmentation
把数据分成了 T T T组相对平衡的子集 { C i } i = 0 , 1 , . . . , T \{\mathcal{C}_i\}_{i=0,1,...,T} {Ci}i=0,1,...,T。训练到 t t t步的时候,用 C i = 0 , 1 , . . . , t \mathcal{C}_{i=0,1,...,t} Ci=0,1,...,t个子集。
训练过程:
t − 1 t-1 t1步网络参数是 θ t − 1 \theta_{t-1} θt1,这部分参数要冻起来。然后加入 C t \mathcal{C}_t Ct,分类器是要随着 t t t增加逐渐扩张,以便分类新来的数据。同时用知识蒸馏传递就参数:
L k d = ∣ y t − 1 − y t ′ ∣ L_{kd}=|y_{t-1}-y'_t| Lkd=yt1yt

y t − 1 y_{t-1} yt1是用参数 θ t − 1 \theta_{t-1} θt1的模型预测的分数, y t ′ y'_{t} yt是当前模型,即当前参数为 θ t \theta_t θt的模型。 L k d L_{kd} Lkd用的L2范数。

Instance-level Data Balanced Replay
随着新的 C t \mathcal{C}_t Ct加入,后面来的自己包含的训练样本越来越少,这个论文用了下采样方法来平衡,起了个名字叫replay。下采样参数是用 C t \mathcal{C}_t Ct的平均样本个数 n ‾ c \overline{n}_c nc { C i } i = 0 , 1 , . . . , t − 1 \{\mathcal{C}_i\}_{i=0,1,...,t-1} {Ci}i=0,1,...,t1的平均个数 n ‾ k \overline{n}_k nk计算的。采 ⌈ n ‾ c / n ‾ k ⌉ \lceil \overline{n}_c/\overline{n}_k \rceil nc/nk个。这里可能少乘了个当前类别的个数 n k n_k nk吧,反正大概就是这个意思,样本越来越少了,之前的 t − 1 t-1 t1里的样本个数很多,和当前 t t t类的子集中的样本个数平衡一下,少采一些。

对新加进来的数据的分类器参数,用Meta Weight Generator的方式学的。即分类器参数 W t \mathcal{W}_t Wt分成了两部分 [ W t O , W t N ] [\mathcal{W}_t^\mathcal{O},\mathcal{W}_t^\mathcal{N}] [WtO,WtN] W t O \mathcal{W}_t^\mathcal{O} WtO直接用之前 t − 1 t-1 t1步学的就可以了, W t N \mathcal{W}_t^\mathcal{N} WtN是通过检索base classifier weights组合出来的。大概意思是说重新组合学到的特征的权重,获得新看到的物体的类别。

总结

出发点是很容易想到的,但是具体如何实现就很复杂。这篇论文用的meta-learning的思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值