今天看论文吧~~
Intuition
只看摘要,我觉得这个论文应该很有用。
同样是减小类内距离,增大类间距离。从特征的正交性角度考虑。one-hot是正交的,基于此,特征应该有正交性限制。
simply maximizing the margins can cause negative correlation between classes and thereby
unnecessarily focus on well-separated classes while we tend to ensure independence between different class features to successfully disentangle the class-specific characteristics.
这里有个讲增大边界的副作用:导致类别之间的负相关,模型只关注将各类分开???啥意思?分开不好么?是说只把特征分开了没有解耦关键特征?后半句理解,就是说不同类的特征(用于区分各类的特征)应该是相互独立的。
让每类特征相互垂直。
Method
怎么加这个让特征垂直的限制?
s
=
∑
i
,
j
∈
B
,
y
i
=
y
j
⟨
f
i
,
f
j
⟩
d
=
∑
i
,
j
∈
B
,
y
i
≠
y
j
⟨
f
i
,
f
j
⟩
L
O
P
L
=
(
1
−
s
)
+
λ
∣
d
∣
s = \sum_{i,j \in B,y_i=y_j}\left \langle \mathbf{f}_i , \mathbf{f}_j \right \rangle \\ d = \sum_{i,j \in B,y_i \neq y_j}\left \langle \mathbf{f}_i , \mathbf{f}_j \right \rangle \\ L_{OPL} = (1-s)+\lambda|d|
s=i,j∈B,yi=yj∑⟨fi,fj⟩d=i,j∈B,yi=yj∑⟨fi,fj⟩LOPL=(1−s)+λ∣d∣
⟨ ⋅ ⟩ \left \langle\cdot \right \rangle ⟨⋅⟩ 是 cos \cos cos距离。 ∣ ⋅ ∣ |\cdot| ∣⋅∣是 L 2 L2 L2norm。
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
标签一样的,就让他们尽量同一方向;标签不一样的就让他们的特征尽量垂直。(那要是让特征都大于
π
/
2
\pi/2
π/2不好么?好像明白一点儿,大于
π
/
2
\pi/2
π/2的话在别的特征上仍然有投影,区分各个类的特征应该是自己最独特的特征,所以应该相互正交。)
总结
这个限制被当作正则项,可以和其他的损失函数联合使用。