【读论文0813】Orthogonal Projection Loss

今天看论文吧~~

Orthogonal Projection Loss

论文在这里
挂在arxiv上了
ICCV21
代码在这里


Intuition

只看摘要,我觉得这个论文应该很有用。

同样是减小类内距离,增大类间距离。从特征的正交性角度考虑。one-hot是正交的,基于此,特征应该有正交性限制。

simply maximizing the margins can cause negative correlation between classes and thereby
unnecessarily focus on well-separated classes while we tend to ensure independence between different class features to successfully disentangle the class-specific characteristics.

这里有个讲增大边界的副作用:导致类别之间的负相关,模型只关注将各类分开???啥意思?分开不好么?是说只把特征分开了没有解耦关键特征?后半句理解,就是说不同类的特征(用于区分各类的特征)应该是相互独立的。
让每类特征相互垂直。

Method

怎么加这个让特征垂直的限制?
s = ∑ i , j ∈ B , y i = y j ⟨ f i , f j ⟩ d = ∑ i , j ∈ B , y i ≠ y j ⟨ f i , f j ⟩ L O P L = ( 1 − s ) + λ ∣ d ∣ s = \sum_{i,j \in B,y_i=y_j}\left \langle \mathbf{f}_i , \mathbf{f}_j \right \rangle \\ d = \sum_{i,j \in B,y_i \neq y_j}\left \langle \mathbf{f}_i , \mathbf{f}_j \right \rangle \\ L_{OPL} = (1-s)+\lambda|d| s=i,jB,yi=yjfi,fjd=i,jB,yi=yjfi,fjLOPL=(1s)+λd

⟨ ⋅ ⟩ \left \langle\cdot \right \rangle cos ⁡ \cos cos距离。 ∣ ⋅ ∣ |\cdot| L 2 L2 L2norm。

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
标签一样的,就让他们尽量同一方向;标签不一样的就让他们的特征尽量垂直。(那要是让特征都大于 π / 2 \pi/2 π/2不好么?好像明白一点儿,大于 π / 2 \pi/2 π/2的话在别的特征上仍然有投影,区分各个类的特征应该是自己最独特的特征,所以应该相互正交。)

总结

这个限制被当作正则项,可以和其他的损失函数联合使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值