面试--算法--Top K

Top K问题是面试时手写代码的常考题,某些场景下的解法与堆排和快排的关系紧密,所以把它放在堆排后面讲。

下面先来还原一下Top K考试常见的套路。

你正紧张地坐在小隔间里,听着越来越近的脚步声,内心忐忑,犹如兔脱。

推门声呷然而起,你扭头一看,身体已不由自主起立,打量着眼前来人,心里一阵窃喜:还好,面善。

面试官点头致意,你配合坐下,满心满眼一片赤诚,恨不得把公司的茶水阿姨都夸一遍来表明你面试的诚意。

面试官拿着你的简历目不斜视,有意无意间想起了经年彼时自己面试的紧张场景,自己走过的弯路不能让他再重复走,于是决定先暖暖场活跃活跃气氛,也多少祭奠一下那夕阳晚钟,那迎风少年,那狗日的青春。

面试官说今天的天气真好,你说蓝天白云不多见,哈哈哈哈。

你说贵公司的办公环境真心不错,面试官看看四周表面克制内心放浪——那是自…不对,不能这么说,年轻人面前还是不要喜形于色。

面试官说还好了,哈哈哈哈。

真的,环境很不错,哈哈哈哈。你说着,手心大汗淋漓,嗓子里干得冒烟。

面试官眯着眼看了看你,说公司大了人就多,人多了数据就多了,现在有一组千万级别的数,你能不能帮我找出最大的5个?尽量少用空间和时间。

你听完风中凌乱一脸懵逼,电光火石之间抖一抖眼皮,一阵狂喜,还好看过丑旦的这篇笔记。

Offer,稳了。

嘿嘿,以上扯的这个淡,希望能加深你对Top K问题的印象^_^。

言归正传,笔者见过关于Top K问题最全的分类总结是在这里(包括海量数据的处理),个人将这些题分成了两类:一类是容易写代码实现的;另一类侧重考察思路的。毫无疑问,后一种比较简单,你只要记住它的应用场景、解决思路,并能在面试的过程中将它顺利地表达出来,便能以不变应万变。前一种,需要手写代码,就必须要掌握一定的技巧,常见的解法有两种,就是前面说过的堆排和快排的变形。

本文主要来看看方便用代码解决的问题。

堆排解法

用堆排来解决Top K的思路很直接。

前面已经说过,堆排利用的大(小)顶堆所有子节点元素都比父节点小(大)的性质来实现的,这里故技重施:既然一个大顶堆的顶是最大的元素,那我们要找最小的K个元素,是不是可以先建立一个包含K个元素的堆,然后遍历集合,如果集合的元素比堆顶元素小(说明它目前应该在K个最小之列),那就用该元素来替换堆顶元素,同时维护该堆的性质,那在遍历结束的时候,堆中包含的K个元素是不是就是我们要找的最小的K个元素?

实现:
在堆排的基础上,稍作了修改,buildHeap和heapify函数都是一样的实现,不难理解。

速记口诀:最小的K个用最大堆,最大的K个用最小堆。

public class TopK {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        int[] a = { 1, 17, 3, 4, 5, 6, 7, 16, 9, 10, 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值