梯度下降

梯度下降算法

机器学习中常见的最小化问题是:
m i n : f ( w ) = ∑ i = 1 N f i ( w ) min :f(w)=\sum_{i=1}^{N}{f_{i}(w)} min:f(w)=i=1Nfi(w)

例如:可认为每一项都是一个数据点的残差

1.经典梯度下降

一般的考虑就是,随机选取 w w w,之后
计算梯度 ∇ f \nabla f f,之后对于 w w w,用下面办法更新
w t = w t − 1 − α ∇ f ( w t − 1 ) w_{t}=w_{t-1}-\alpha\nabla f(w_{t-1}) wt=wt1αf(wt1)
收敛性好,但是,容易出现陷入局部极值,并且单步计算量大

2.随机梯度下降

N 是一个随机变量,服从均匀分布 { 1 , 2 , . . . , n } \{1,2,...,n\} {1,2,...,n},按下面办法更新 w t w_{t} wt
w t = w t − 1 − α ∇ f N ( w t − 1 ) w_{t}=w_{t-1}-\alpha\nabla f_{N}(w_{t-1}) wt=wt1αfN(wt1)
即使对于凸函数,这个东西也不一定收敛,实际上 f N ( w t − 1 ) f_{N}(w_{t-1}) fN(wt1)作为一个估计量,确实是无偏的,但是未必是一致的。

由此,公式应当调整为
w t = w t − 1 − α t − 1 ∇ f N ( w t − 1 ) , α t = α 0 / ( 1 + λ t ) w_{t}=w_{t-1}-\alpha_{t-1}\nabla f_{N}(w_{t-1}) , \alpha_{t} = \alpha_{0}/(1+\lambda t) wt=wt1αt1fN(wt1),αt=α0/(1+λt)

收敛速度明显变慢

3.半随机梯度下降

算法流程:

for k in {1,...,}
	g = grad(f)(w_k)
	y = w_k
	T = 随机获得的t P(T = t) = (1 - lamda * alpha) ** -t
	for i in {1,...,t}
		n is a random int from {1,...,N}
		y = y - a(g - grad(f_n)(y) + grad(f_n)(w_k));
	w_k+1 = y

这种下降方式,实际上计算量还超过了梯度下降,但是其中加入了一些随机的因素,或许可以防止陷入极小值。
收敛速度也是基本和梯度下降差不多。

4. 平均梯度下降

这种下降带有某种记忆性

g_list = [0,...0];
for k in {1,...,}
	N = random.randint(1, n);
	w_k -= alpha/N * (sum([g_list[i] for i in range(0, n) if i != N]) + 
	grad(f_N)(w_k))
	g_N = grad(f_N)(w_k)

算法的弊病在于空间复杂度O(N).

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值