MiltonY
码龄12年
关注
提问 私信
  • 博客:260,913
    260,913
    总访问量
  • 43
    原创
  • 212,119
    排名
  • 213
    粉丝
  • 5
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2013-03-14
博客简介:

YMilton的专栏

博客描述:
Write more blog!
查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    482
    当月
    5
个人成就
  • 获得307次点赞
  • 内容获得242次评论
  • 获得1,769次收藏
  • 代码片获得1,287次分享
创作历程
  • 1篇
    2024年
  • 19篇
    2021年
  • 2篇
    2020年
  • 17篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • 计算机视觉
    18篇
  • 图像处理
  • 目标检测
    14篇
  • YOLO
    10篇
  • 图像拼接
    4篇
  • 深度学习知识点
    9篇
  • 深度学习网络层
    4篇
  • 开发/维护/管理知识点
    12篇
  • 数据处理知识点
    2篇
  • 人脸识别
    1篇
  • 数据集
    2篇
  • 图像分类
    2篇
  • 隐写算法
    3篇
兴趣领域 设置
  • 人工智能
    opencvtensorflowpytorchscikit-learn
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLOv6、YOLOv7、YOLOv8、YOLOv11网络结构图(清晰版)

YOLO系列网络结构图
原创
发布博客 2024.02.26 ·
7599 阅读 ·
16 点赞 ·
20 评论 ·
74 收藏

YOLOX训练代码分析3-损失函数

yolox构建模型时,是通过yolox_base.py中的get_model函数获取,其中分成两部分YOLOXPAFPN与YOLOXHead两个类,由YOLOX加载封装整个网络。if getattr(self, "model", None) is None: # 该对象中是否存在model属性,默认值为None,设置成模型 in_channels = [256, 512, 1024] backbone = YOLOPAFPN(self.depth, self.width, in_cha
原创
发布博客 2021.10.11 ·
16993 阅读 ·
41 点赞 ·
22 评论 ·
160 收藏

YOLOX训练代码分析2-trainer.py

1. yolox网络构建(1) 网络加载通过tools/train.py中main函数get_exp构建网络,其中get_exp可以通过名称与文件获取网络模型与参数。if exp_file is not None: return get_exp_by_file(exp_file) # 通过文件获取模型参数else: return get_exp_by_name(exp_name) # 通过名称获取模型参数get_exp_by_name最终是调用get_exp_by_fil
原创
发布博客 2021.10.08 ·
3287 阅读 ·
13 点赞 ·
6 评论 ·
54 收藏

YOLOX训练代码分析1-COCO与VOC训练

1. YOLOX的网络结构图与代码YOLOv3、YOLOv4、YOLOv5、YOLOx的网络结构图(清晰版)_YMilton的专栏-CSDN博客​​​​​((1) 网络结构图​(2) yolox代码URL:https://github.com/Megvii-BaseDetection/YOLOX.git2. yolox如何训练coco数据(1) 第一步:yolox...
原创
发布博客 2021.09.30 ·
3231 阅读 ·
5 点赞 ·
5 评论 ·
21 收藏

公开人脸识别数据集

1. 口罩遮挡人脸数据由武汉大学多媒体研究中心发起,目前是全球最大的口罩遮挡人脸数据集。分为真实口罩人脸和模拟口罩人脸两部分,真实口罩人脸包括525人的5000张口罩人脸和9万张正常人脸。模拟口罩人脸包含1万个人共50万张模拟人脸数据集。应用项目:人脸检测、人脸识别URL:https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset2. Wider Face人脸数据香港中文大学发起的,包含3万张图片共40万张人脸。应用项.
原创
发布博客 2021.09.27 ·
18407 阅读 ·
5 点赞 ·
1 评论 ·
108 收藏

YOLOv3、YOLOv4、YOLOv5、YOLOx的网络结构图(清晰版)

YOLO系列网络结构图2. Yolov4网络结构图3. Yolov5网络结构图4. Yolox网络结构图
原创
发布博客 2021.09.13 ·
45113 阅读 ·
77 点赞 ·
84 评论 ·
467 收藏

BBox边界框损失函数演进

边界框损失计算的演进边界框回归损失近些年的发展过程:1. MSE Loss2. IoU Loss计算IoU交并比示意图如图,蓝色为真实目标框,橘红色为预测目标框。IoU Loss存在的问题,存在检测框大小相同,重叠区域面积相等的情况(IoU相等),无法区分不同相交情况。3. GIoU Loss为了改进IoU Loss存在的问题,提出了GIoU方法。GIoU Loss的计算公式其中 表示真实框与预测框的最小闭包区域面积,即外接矩形面积。...
原创
发布博客 2021.09.02 ·
1596 阅读 ·
1 点赞 ·
0 评论 ·
15 收藏

yolov4与yolov5的区别

不同点:1. yolov4采用了较多的数据增强方法(图像增强方法(Data Augmentation)_YMilton的专栏-CSDN博客,博客中方法都使用),而yolov5进行了3中数据增强:缩放、色彩空间调整与Mosaic数据增强。2. yolov5锚点框是基于训练数据集自动学习的,而yolov4没有自适应锚点框。3. yolov5采用的激活函数包括leakyReLU和Sigmoid,yolov5的中间隐藏层使用的是leakyReLU激活函数,最后的检测层使用的是Sigmoid激活函数。而y
原创
发布博客 2021.09.02 ·
19244 阅读 ·
10 点赞 ·
0 评论 ·
97 收藏

目标检测图像增强方法(Data Augmentation)

1. 图像遮挡1.1 Random Erase用随机值或训练集的平均像素替换图像区域。Paper: Random Erasing Data Augmentation URL: https://arxiv.org/pdf/1708.04896.pdf1.2 Cutout仅对CNN第一层的输入图像使用随机剪切框Mask。Paper:Improved Regularization of Convolutional Neural Networks with Cutout...
原创
发布博客 2021.09.01 ·
5811 阅读 ·
7 点赞 ·
1 评论 ·
45 收藏

YOLOX环境搭建与运行效果

通过git clone git@github.com:Megvii-BaseDetection/YOLOX.git或者下载方式获得旷世在github上共享的工程文件。1. 虚拟环境创建通过如下命令在conda下创建用于工程YOLOX的虚拟环境,假设虚拟环境为yoloxconda create -n yolox python=3.8然后通过命令conda activate yolox进入yolox虚拟环境,接着下面的安装。2. pycocotools的安装在Linux环境下安装
原创
发布博客 2021.08.16 ·
3582 阅读 ·
6 点赞 ·
1 评论 ·
22 收藏

YOLOX采用的最新技术

YOLOX检测器的锚框:采用anchor-free的方式,以及使用例如网络头解耦(decoupled head),与以标签分配策略为主导(leading label assignment strategy SimOTA)的技术生成网络模型。YOLOX使用的相关技术论文1.anchor-free detectors: (1) Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In ECCV, 2...
原创
发布博客 2021.08.06 ·
532 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

yolov4中带groups的route理解

1. yolov4-tiny配置文件示意图其中yolov4-tiny.cfg文件[route]中多出了groups与group_id
原创
发布博客 2021.06.29 ·
673 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

yolov2中的reorg网络层数据理解

yolov2的reorg数据理解 以上是yolov2的reorg层在整个yolov2网络的示意图。yolov2的reorg层的输入是38x38x64=92416,通过reorg重组得到输出19x19x256。本文需要理解的是reorg是如何重组的。1.reorg的darknet代码2. 根据程序理解矩阵重组本文只考虑长、宽、通道维度上的变化过程。(1) 根据yolov2中的参数,可以得到reorg层:stride=2, in_c=64, [out_w, out_h...
原创
发布博客 2021.05.26 ·
1480 阅读 ·
2 点赞 ·
2 评论 ·
5 收藏

Batch Normalization的Darknet代码解析

Batch_Norm公式推导与Darknet代码理解论文:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》URL:https://arxiv.org/pdf/1502.03167.pdf1. Batch_Norm的正向推导2. Batch_Norm反向推导其中对均值与xi的求导会用到复合函数的求导计算:3. darknet代码3.
原创
发布博客 2021.05.19 ·
320 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

darknet的batch_norm是如何融合到卷积层conv的

前向传播中,batch_norm与conv的融合1. batch_norm层的前向传播其中mean(X)表示训练过程中得到的滑动平均值,var(X)表示训练过程中得到的滑动方差。具有泛化整个训练过程所有的图片的像素值。表示缩放因子,表示为平移因子,为学习过程中学习到的值。2. conv层的前向传播其中W表示为卷积核,b表示为偏置,卷积层一般为0。3. 合并batch_norm与conv4. darknet中的函数fuse_conv_batchnorm...
原创
发布博客 2021.05.07 ·
694 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

coco数据集的理解

coco数据集的理解一键式下载:https://github.com/pjreddie/darknet/tree/master/scripts/get_coco_dataset.sh,然后在Linux环境下运行.sh文件。1. coco数据集下载地址(1) 图像集下载地址训练图像集:https://pjreddie.com/media/files/train2014.zip验证图像集:https://pjreddie.com/media/files/val2014.zip(2) 图像
原创
发布博客 2021.04.14 ·
2111 阅读 ·
1 点赞 ·
1 评论 ·
13 收藏

评估计算recall、precision、AP、F1、mAP(PyTorch-YOLOv3代码解析二)

目标检测评估计算(Python+Pytorch)代码github地址:https://github.com/eriklindernoren/PyTorch-YOLOv31. 检测的评估函数# reference: https://github.com/eriklindernoren/PyTorch-YOLOv3/blob/f917503ffe4a21d2b1148d8cb13b89b834517d76/utils/utils.pydef ap_per_class(tp, conf, pre
原创
发布博客 2021.04.13 ·
6766 阅读 ·
6 点赞 ·
8 评论 ·
32 收藏

非极大值抑制(PyTorch-YOLOv3代码解析一)

目标检测中的非极大值抑制之代码解析(Python)1. 非极大值抑制函数代码# reference: https://github.com/eriklindernoren/PyTorch-YOLOv3/blob/f917503ffe4a21d2b1148d8cb13b89b834517d76/utils/utils.pydef non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): """ 剔除目标置信度小
原创
发布博客 2021.04.09 ·
1683 阅读 ·
0 点赞 ·
0 评论 ·
19 收藏

“[...]“、“[::]“与torch.cat的解析(YOLOv5 Focus common.py)

"[...]"、"[::]"与torch.cat的解析YOLOv5中common.py的函数Focus.forward,返回为self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)),这句话的解析。def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(
原创
发布博客 2021.03.18 ·
930 阅读 ·
10 点赞 ·
3 评论 ·
18 收藏

图像缩放后单应性还原(Image Stitching 4)

图像缩放后的单应性还原1. 公式推导假设待拼接的两幅图像分别为与,两幅的单应性矩阵为。再假设图像的坐标点与图像的坐标点单应性对应。则有等式(1-1): (1-1) 再假设按照尺度缩放的图像为与,缩放的两幅图像间的单应性矩阵为,同理有等式(1-2): (1-2) 由于图像与是通过尺度缩放后,得到的两幅图像分别为与,因此图像、的坐标点与图像、的关系表为等式(1-3): (1-3) 令 (1-4) 根据公式(1-2)(1-3)(1-4),则有以下推导
原创
发布博客 2021.03.11 ·
1110 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏
加载更多