Spark 实训04,Spark SQL案例:计算平均分

本文介绍了如何使用Scala和Spark在Maven项目中,从HDFS读取多科成绩文件,通过SparkSQL计算每个学生的平均分,并创建分组排行榜单例。涉及步骤包括配置Maven依赖、创建日志文件和实现排行榜功能。
摘要由CSDN通过智能技术生成

目录

1.任务目标

2.准备工作

3.新建Maven项目

4.添加相关依赖和构建插件​

5.创建日志属性文件

6.创建分组排行榜单例对象​

7.本地运行程序,查看结果​


1.任务目标

有多科成绩表,比如python.txt、spark.txt、django.txt,计算每个学生三科平均分

2.准备工作

master虚拟机上创建三个成绩文件

在HDFS上新建/score目录

 

将三个成绩文件上传到HDFS的/score目录

3.新建Maven项目

java目录改成scala目录

 

4.添加相关依赖和构建插件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.luog.sql</groupId>
    <artifactId>CalculateAverage</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>
 

5.创建日志属性文件

 log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

6.创建分组排行榜单例对象

package net.luog.sql

import org.apache.spark.sql.{Dataset, SparkSession}

/**
 * 功能:利用Spark SQL计算平均分
 */
object CalculateAverageBySQL {
  def main(args: Array[String]): Unit = {
    // 创建或得到Spark会话对象
    val spark = SparkSession.builder()
      .appName("CalculateAverageBySQL")
      .master("local[*]")
      .getOrCreate()
    // 读取HDFS上“/score”目录里的成绩文件
    val lines: Dataset[String] = spark.read.textFile("hdfs://master:9000/score")
    // 导入隐式转换
    import spark.implicits._
    // 创建成绩数据集
    val gradeDS: Dataset[Grade] = lines.map(
      line => {
        val fields = line.split(" ")
        val id = fields(0).toInt
        val name = fields(1)
        val score = fields(2).toInt
        Grade(id, name, score)
      })
    // 将数据集转换成数据帧
    val df = gradeDS.toDF();
    // 基于数据帧创建临时表
    df.createOrReplaceTempView("t_grade")
    // 查询临时表,计算平均分
    val avg = spark.sql(
      """
        |select first(id) as id, name, cast(avg(score) as decimal(5, 2)) as average
        |   from t_grade
        |   group by name
        |   order by id
        |""".stripMargin
    )

    // 按照指定格式输出平均成绩
    println()
    avg.collect.foreach(row => println(row(0) + " " + row(1) + " " + row (2)))

    // 关闭Spark会话
    spark.close()
  }

  // 定义成绩样例类
  case class Grade(id: Int, name: String, score: Int)
}
 

7.本地运行程序,查看结果​编辑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值