最短路算法总结

最短路算法总结

最短路问题分类:

最短路问题分为两大类,一类是单源最短路,也就是只有一个起点终点,另一类是多源最短路,其中有多个起点与终点。
单源最短路又可以分成边权为正与边权为负两类。

最短路问题存图方式:

存图主要有两种方式,一种以邻接矩阵存储(也就是二维数组:g[i][j] = k表示i到j有一条长度为k的边),这种方式主要适用于稠密图(边数接近点数的平方的图)。另一种是以领接表存储(链表),这种方式适合稀疏图。
至于为什么:

邻接表只存储非零节点,而邻接矩阵则要把所有的节点信息(非零节点与零节点)都存储下来。
稀疏图的非零节点不多,所以选用邻接表效率高,如果选用稠密图就会造成很多空间的浪费,矩阵中大多数都会是零节点!
稠密图的非零界点多,零节点少,选用邻接矩阵是最适合不过!

一、单源最短路。且边权为正

1、普通的dijkstra算法(主要处理稠密图问题)

数组:
dist[i]:表示第i个点到原点的最短距离
g[i][j]:表示点i到j的距离(没有边时值为无穷大)
st[i]:记录节点i是否以及被遍历过
主要思路: 基于贪心的思想。遍历n次,每次找到当前状态下dist值最小的节点,由这个节点发散出去求得的距离也会是最小的,所以此时还要遍历整张图以更新其它点的最短路,并用st数组标记该点已经遍历过(如果不标记,下次遍历到时求得的最短路一定会更大)
时间复杂度: 由于整个遍历了两次整张图,所以复杂度为O(n ^ 2)
代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N = 510;

int n, m;
int g[N][N];
int dist[N];
bool st[N];

int dijkstra() {
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;
	for(int i = 1; i <= n; i++) {
		int t = -1;
		for(int j = 1; j <= n; j++) {
			if(st[j] == false && (t == -1 || dist[t] > dist[j])) {
				t = j;
			}//找到当前dist最小的点,由这个点发散出去的点得到的值也一定是最小的 
		}
		st[t] = true;
		
		for(int j = 1; j <= n; j++)  dist[j] = min(dist[j], dist[t] + g[t][j]);	
		//从当前点更新一次所有其他点的最短路径 
	}
	if(dist[n] == 0x3f3f3f3f) return -1;
	else return dist[n];
}
int main() {
	ios_base::sync_with_stdio(false);
	cin.tie();
	cout.tie();
	
	memset(g, 0x3f, sizeof(g));
	cin >> n >> m;
	for(int i = 1; i <= m; i++) {
		int a, b, c;
		cin >> a >> b >> c;
		g[a][b] = min(g[a][b], c);//保证没有自环 
	}
	
	int t = dijkstra();
	cout << t << endl;
	return 0;
}

2、堆优化的Dijkstra算法(主要处理稀疏图问题)

堆优化主要在朴素dijkstra算法的基础上用小根堆维护了上述每次找最小dist的过程
小根堆每次插入数值的时间复杂度为O(logn),且邻接表以边的形式存储,所以总时间复杂度为O(mlogn)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
typedef pair <int, int> PLL;

int n, m;
int h[N], e[N], ne[N], val[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c) {
	e[idx] = b;
	val[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

int dijkstra() {
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;
	
	priority_queue <PLL, vector<PLL>, greater<PLL> > heap;
	//pair在不明确声明的情况下以第一个元素比较 
	heap.push({0, 1});
	
	while(heap.size() != 0) {
		PLL t = heap.top();
		heap.pop();
		int dis = t.first;
		int ver = t.second;
		
		if(st[ver] == true) continue;
		st[ver] = true;
		
		for(int i = h[ver]; i != -1; i = ne[i]) {
			int j = e[i];
			if(dist[j] > dis + val[i]) {
				dist[j] = dis + val[i];
				heap.push({dist[j], j});
			}
		}
	}
	if(dist[n] == 0x3f3f3f3f) return -1;
	else return dist[n];
}
int main() {
	/*
	ios_base::sync_with_stdio(false);
	cin.tie();
	cout.tie();
	*/
	memset(h, -1, sizeof(h));
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= m; i++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	int t = dijkstra();
	printf("%d\n", t);
	return 0;
} 

二、单源最短路。且存在负边权

1、Bellman-ford算法

唯一可以处理限制最短路边数问题的算法

结构体: 储存边:起始点,终点,边权值
数组:
backup[]:保存上次迭代后的dist数组,防止在本次迭代中循环时,先行更新的dist值会对后续更新的dist值做干扰
dist[i]:表示第i个点到原点的最短距离
主要思路: 循环k次,每次遍历所有的边,看似把所有的边都遍历了一遍,实际只会更新一个节点的dist值,所以外层循环k次刚好表示经过了k条边
时间复杂度: O(nm)
代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 510, M = 1e4 + 10;

int n, m, k;
int dist[N], backup[N];

struct Edge {
	int a, b;
	int e;
}edge[M];

int bellman_ford() {
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;
	
	for(int i = 1; i <= k; i++) {
		memcpy(backup, dist, sizeof(dist)); 
		for(int j = 1; j <= m; j++) {
			int a = edge[j].a, b = edge[j].b, e = edge[j].e;
			dist[b] = min(dist[b], backup[a] + e);
		}//看似遍历了所有的边,其实只有相邻的点被更新了 
	}
	//cout << dist[n] << endl;
	if(dist[n] > 0x3f3f3f3f / 2) return -0x3f3f3f3f;//防止无穷减去一个小边权小于无穷的情况
	else return dist[n]; 
}

int main() {
	scanf("%d%d%d", &n, &m, &k);
	for(int i = 1; i <= m; i++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		edge[i] = {a, b, c};
	}
	int t = bellman_ford();
	if(t == -0x3f3f3f3f) puts("impossible");
	else printf("%d\n", t);
	return 0;
} 

2、spfa算法(邻接表存储,无负环情况)

数组: 与dijkstra算法相似
主要思路: spfa算法的代码看似与堆优化的dijkstra算法类似 ,实则有不同:

Dijkstra算法是基于贪心和DP的思路,一开始先将所有点到原点的距离设置为无穷大,特别的是dis[s]=0,此处的s为原点,它是每次找到离原点最近的点,放入堆中(成为堆顶)并且标记,再以这个点为起点去更新与它相连的点,类似于bfs,而bfs具有短视的特点,它只能看到与它直接相连的点,这也就决定了Dijkstra算法不能处理负权图,假设第一次找到了离原点最近的点为X,再以X为起点去更新与X相连的点,如果存在负边的话,那我找的与X相连的点到X的距离也就不一定是最小了,这就破坏了贪心的思路,算法也就出问题了

SPFA算法:它是要对所有的边去进行一次松弛操作,进行了n-1次更新,先初始化dis数组,起点赋值为0,其余赋值为无穷大,先起点入队列,入了队列的被标记,当队列不为空时循环,队首元素出队,松弛与队首元素相连的边,这些被更新的点如果不在队列中就加入队列, 再次队首元素出队,松弛与队首元素相连的边,它是不需要去找离原点最近的点的,所以Dijkstra算法用的是小根堆优化,SPFA直接用的队列
————————————————
版权声明:本文为CSDN博主「Wpiper」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_51817638/article/details/115874989

时间复杂度: O(m),最坏O(nm)
代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;

int n, m, k;
int e[N], ne[N], h[N], val[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c) {
	e[idx] = b;
	val[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

int spfa() {
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;
	
	queue <int> q;
	q.push(1);
	st[1] = true;
	while(q.size() != 0) {
		int t = q.front();
		q.pop();
		st[t] = false;
		
		for(int i = h[t]; i != -1; i = ne[i]) {
			int j = e[i];
			if(dist[j] > dist[t] + val[i]) {
				dist[j] = dist[t] + val[i];
				if(st[j] == false) {
					st[j] = true;
					q.push(j); 	  
				}
			}
		}
	}
	if(dist[n] == 0x3f3f3f3f) return -0x3f3f3f3f;
	else return dist[n];
}

int main() {
	memset(h, -1, sizeof(h));
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= m; i++) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	int t = spfa();
	if(t == -0x3f3f3f3f) puts("impossible");
	else printf("%d", t);
	return 0;
}

3、spfa算法判断负环

数组:
cnt[i]:记录从原点到i节点最短路的节点数,>n表示一定出现了环,而在最短路过程中出现环一定就是负环
代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N = 2010, M = 1e5 + 10;

int n, m;
int e[M], ne[M], h[N], val[M], idx;
int dist[N];
int cnt[N];
bool st[N];

void add(int a, int b, int c) {
	e[idx] = b;
	ne[idx] = h[a];
	val[idx] = c;
	h[a] = idx;
	idx++;
}

bool spfa() {
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 1;
	
	queue <int> q;
	for(int i = 1; i <= n; i++) q.push(i);//负环不一定在1节点开始 
	
	while(q.size() != 0) {
		int t = q.front();
		q.pop();
		
		for(int i = h[t]; i != -1; i = ne[i]) {
			int j = e[i];
			if(dist[j] > dist[t] + val[i]) {
				dist[j] = dist[t] + val[i];
				cnt[j] = cnt[t] + 1;
				if(cnt[j] > n) return true;
				q.push(j);
			}
		}
	}
	return false;
}
int main() {
	ios_base::sync_with_stdio(false);
	cin.tie();
	cout.tie();
	
	memset(h, -1, sizeof(h));
	cin >> n >> m;
	for(int i = 1; i <= m; i++) {
		int x, y, z;
		cin >> x >> y >> z;
		add(x, y, z);
	}
	if(spfa() == false) cout << "No" << endl;
	else cout << "Yes" << endl;
	return 0;
}

三、多源汇最短路

1、Floyd算法

数组:
d[i][j]:表示从i到j的最短路长度
主要思路: 动态规划
时间复杂度:O(n ^ 3)
代码实现:

#include <bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;

int n, m, q;
int d[N][N];

void floyd() {
	for(int k = 1; k <= n; k++)
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= n; j++)
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main() {
	ios_base::sync_with_stdio(false);
	cin.tie();
	cout.tie();
	
	cin >> n >> m >> q;
	
	for(int i = 1; i <= n; i++) 
		for(int j = 1; j <= n; j++) 
			if(i == j) d[i][j] = 0;
			else d[i][j] = INF;
	
	for(int i = 1; i <= m; i++) {
		int x, y, z;
		cin >> x >> y >> z;
		d[x][y] = min(d[x][y], z);
	}
	floyd();
	while(q--) {
		int x, y;
		cin >> x >> y;
		if(d[x][y] == INF) cout << "impossible" << endl;
		else cout << d[x][y] << endl; 
	}
	return 0;
}

注释:时间复杂度的n表示节点数,m表示边数

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值