由2FSK→MSK存在以下几点:
- 1、如何实现已调信号的码元正交;
- 2、如何实现相位连续,不突变。
1、以2FSK一般表示法出发,推导得出两种频率的约束关系
正交条件:
积化和差公式有:
当载波频率比较高,第1、3项近似为0.
将红色部分和差化积展开。
当初相任意值时,有:
即有:
结论1:初相任意,最小频差为1/Ts,对fc无强制要求,正交推导有近似。
倘若初相相同。则有sin(φ0-φ1 )=0,仅需满足sin[(ω0-ω1 ) *Ts ]=0,则有
(ω0 -ω1 ) Ts=nπ
f0- f1=n/(2Ts )
结论2:初相相同,最小频差为1/2Ts
2、在初相相同φ0-φ1=0的基础上且f0-f1=1/2Ts ,验证正交性。
上面蓝色部分分别为0,要求:
结论3:严格正交对载频有要求,是1/4码元速率的整数倍。
3、将初相相同,且带入最小频差频率关系。
假设中心频率为ωc,表征f0和f1仅为ωc的基础上分别偏离±1/4 Ts ,即角频率偏离±π/2Ts
其中ak=±1,+1代表基带1,-1代表基带0;φk代表第k个码元的初相。(由于基带信号01的随机性,即便两种频率的初相相同,经过第k*Ts时间间隔后,上述表示形式不能保证相位连续。)