常单位矢量与变单位矢量


所谓的 常单位矢量,就是空间中任何一点的单位矢量均一致。比如直角坐标系(笛卡尔坐标系)
在这里插入图片描述
但是在圆柱坐标系或者球坐标系情况就不同了,比如 柱坐标系,如下图:
在这里插入图片描述
空间中每一点的单位矢量方向不同。
因此涉及到一个问题在圆柱坐标系下,哈密顿算子还要考虑单位矢量的微分运算,否则会出现问题。

举个例子

法1

在解同轴线的maxwell方程时会出现偏差。
在这里插入图片描述
对同轴线场分布来讲,电场只有er的分量。且是r的函数。即E=er E(r)

在这里插入图片描述

法2

引入标量位函数 Φ ,有E=-∇Φ

在这里插入图片描述
可以看出两种方法解得 E 完全不同,那么问题出现在哪儿呢?

问题分析

在这里插入图片描述
虽然Er不是φ的函数,但是eφ是φ的函数,eφ对φ的二阶导数并不为0
在这里插入图片描述
在这里插入图片描述
其结果与法2一致!

为什么引入标量位函数

引入标量位函数后,就只存在函数,不存在方向,排除了变单位矢量二阶微分的影响。完全从函数角度出发求解即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值