文章目录
所谓的 常单位矢量,就是空间中任何一点的单位矢量均一致。比如直角坐标系(笛卡尔坐标系)

但是在圆柱坐标系或者球坐标系情况就不同了,比如 柱坐标系,如下图:

空间中每一点的单位矢量方向不同。
因此涉及到一个问题在圆柱坐标系下,哈密顿算子还要考虑单位矢量的微分运算,否则会出现问题。
举个例子
法1
在解同轴线的maxwell方程时会出现偏差。
对同轴线场分布来讲,电场只有er的分量。且是r的函数。即E=er E(r)
法2
引入标量位函数 Φ ,有E=-∇Φ
可以看出两种方法解得 E 完全不同,那么问题出现在哪儿呢?
问题分析
虽然Er不是φ的函数,但是eφ是φ的函数,eφ对φ的二阶导数并不为0
其结果与法2一致!
为什么引入标量位函数
引入标量位函数后,就只存在函数,不存在方向,排除了变单位矢量二阶微分的影响。完全从函数角度出发求解即可。