长尾分布和重尾分布

文章来源:

长尾分布,重尾分布(Heavy-tailed Distribution) - Shiyu_Huang - 博客园
https://www.cnblogs.com/huangshiyu13/p/6217180.html

长尾分布,重尾分布(Heavy-tailed Distribution)

Zipf分布:

Zipf分布是一种符合长尾的分布:

 

 

就是指尾巴很长的分布。那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分。另一方面,尾部的数据少,人们对它的了解就少,那么如果它是有害的,那么它的破坏力就非常大,因为人们对它的预防措施和经验比较少。也要所谓的二八法则。

 

 

 

 

多元t分布是一种概率分布在多维空间中的推广形式,其在一维情况下退化为学生t分布。这种分布对于处理具有不确定度的数据特别有用,在金融建模、风险分析等领域有着广泛应用。 关于多元t分布的长尾特性及其数学统计属性如下: 1. 自由度参数ν控制了尾巴的厚度;较小的自由度值意味着更厚的尾巴,即更多的极端事件发生的可能性更大。 2. 厚尾性质使得多元t分布在描述那些可能经历罕见但剧烈变动的现象时更为合适。例如市场回报率通常展示出比正态分布预测更多极值点的行为特征。 3. 多元t分布的概率密度函数(PDF)可以表示为: $$ f(\mathbf{x}; \nu, \mu, \Sigma) = \frac{\Gamma\left[(\nu + p)/2\right]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}|\Sigma|^{1/2}} \left[1+\frac{1}{\nu}({\mathbf x}-\boldsymbol{\mu})^T {\Sigma}^{-1} ({\mathbf x}-\boldsymbol{\mu})\right]^{-(\nu+p)/2}, $$ 其中$\mathbf{x}$是随机向量,$\nu > 0$是一个标量自由度参数,$\boldsymbol{\mu}$是位置矢量而$\Sigma$是非负定矩阵代表尺度矩阵,$p$是维度数。 4. 当样本数量增加时,估计的协方差矩阵会趋近于实际总体的协方差结构,但是由于存在较重的尾巴,所以即使是在大样本的情况下,异常值的影响也不能被完全忽略。 5. 对于给定置信水平下的区间估计或者假设检验来说,因为多元t分布考虑到了更大的不确定性,因此相比于标准正态理论提供的结果更加保守一些。 综上所述,多元t分布因其独特的长尾特性能够更好地捕捉数据集内部潜在的风险因素以及非典型模式的存在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值