随着互联网和人工智能的普及化,个性化营销已经渗透到了我们生活中的方方面面。而如何找到真正的营销敏感人群,将更多的预算投入到可以带来‘增量’的用户上,以提升整体营销roi,成为了后时代精细化运营的关键。
uplift模型可以很好的解决这一问题,本文将介绍此模型以及其如何应用于智能营销的底层原理。
01
什么是Uplift模型?
用一个简单的例子来介绍此模型。假设我们是个电商平台,一件标价300元的商品,用户的购买率为6%。现有一批预算可以给用户发放10元的优惠券以提升用户购买率。需要给每个用户都发放优惠券吗?答案显然是否定,那么这批优惠券应该发送给平台的哪些用户呢?
此时我们脑海中有四类用户:
Persuadables:不发送优惠券则不买,发送优惠券则购买;
Sure things:不论是否发送优惠券均会购买;
Lost causes: 不论是否发送优惠券均不会购买;
Sleeping Dogs: 不发送优惠券会购买,发送优惠券反而不买;
左上的Persuadables(说服型)类用户被发券后产生了正向变