机器学习实战之决策树

决策树的算法可谓是贴近我们的生活,通过下面的案例,你就会发现我们每天都在有意无意的使用着决策树算法(好厉害的样子)。
小明同学每天早上都要去学校,可步行、乘公交和坐隔壁老王叔叔的车(皮一下很开心)。这时,小明就开始做决策了:首先看天气,不下雨时就选择步行去学校;下雨时就看隔壁老王叔叔是否有空,有空就乘老王的车去学校,没空就选择乘公交去学校。如图所示。


3629157-72f51c4513815a78.png
案例

决策树定义

通过上述案例,就可以对决策树下定义了:上图就是决策树(嗯。。。有点敷衍)。决策树由结点和有向边组成。结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性(天气,是否有空),叶节点表示一个类(步行、乘公交和坐隔壁老王叔叔的车)。

决策树算法原理

那怎么通过决策树算法来构造这棵树呢?(难道是上帝之手么?)上述案例较简单,我们现在提出一个很经典的案例,如图所示,我们首先到底是通过天气、湿度还是风级来进行决策了?这里就要提出熵和信息增益。


3629157-13d0d882ac29a5cd.jpg
案例

首先,我们看什么是熵。简单来说,熵是描述事物的混乱程度的(也可以说是不确定性)。例如:中国足球进入世界杯,这个不确定性可能是0,所以熵可能就是0;6面的色子的不确定性比12面色子的要低,所以熵也会比其低。现在就来看熵的公式:H = -∑ni=1p(xi)log2p(xi)
那6面色子的熵:1/6*log21/6的6倍,也就是2.585
以此类推,那12面的熵就是:3.585
最后,我们计算下该案例的信息熵:不打球为5,打球为9,因此熵计算为:

-(5/14 * log(5/14,2) + 9/14 * log(9/14,2))
0.940
信息增益

到底先按哪个特征划分数据集呢?我们有个原则,就是将无序的数据变得有序,换句话说,就是让熵变小,变的越小越好。而信息增益就是划分数据集前后熵的变化,这里就是要让信息增益越大越好。
我们以天气为例,计算划分后的信息增益:

  • 晴天时:2/5打球,3/5不打球,熵为:
-(2/5 * log(2/5,2) + 3/5 * log(3/5,2))
0.971
  • 阴天熵:0
  • 雨天熵:0.971


    3629157-013e90c650025f6e.jpg
    天气

    天气为晴天、阴天和雨天的概率为5/14,4/14和5/14,所以划分后的熵为:5/14 * 0.971+4/14 * 0+5/14 * 0.971得0.693,信息增益为0.940-0.693为0.247,同理可以求出其他特征的信息增益。
    这里的天气信息增益最大,所以选择其为初始的划分依据。
    选择完天气做为第一个划分依据后,能够正确分类的就结束划分,不能够正确分类的就继续算其余特征的信息增益,继续前面的操作,结果如图所示。


    3629157-04cc272e39de7d4d.jpg
    结果
伪代码

所以决策树是一个递归算法,伪代码如下:

def createBranch():
    检测数据集中的所有数据的分类标签是否相同:
        If so return 类标签
        Else:
            寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)
            划分数据集
            创建分支节点
                for 每个划分的子集
                    调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中
            return 分支节点

决策树之海洋生物分类

问题描述与数据

数据为判断是否为鱼类,有两个特征:

  • 在水中是否生存
  • 是否有脚蹼


    3629157-58a79733728ca160.png
    案例

    这里需要我们自己手动构造数据:

def creatDataSet():
    dataSet = [
        [1, 1, 'yes'],
        [1, 1, 'yes'],
        [1, 0, 'no'],
        [0, 1, 'no'],
        [0, 1, 'no']
    ]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels

这里的dataSet为数据,labels是两个特征的名称。

计算熵

这里我们定义一个计算数据集熵的函数:

from math import log

def calcshannon(dataSet):
    num = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannon = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/num
        shannon -= prob * log(prob, 2)
    return shannon

这个代码比较简单,就是对传入的数据,以最后一列(也就是分类label)求熵。

划分数据集

首先设置一个划分数据集的函数,参数为:待划分的数据,划分的特征和返回的特征值,该函数会在choose函数中被调用,用于计算最好的划分特征。

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reduce = featVec[:axis]
            reduce.extend(featVec[axis+1:])
            retDataSet.append(reduce)
    return retDataSet
def choose(dataSet):
    numfeature = len(dataSet[0]) - 1
    baseEntropy = calcshannon(dataSet)
    bestinfogain = 0.0
    bestfeature = -1
    for i in range(numfeature):
        featlist = [example[i] for example in dataSet]
        vals = set(featlist)
        newEntropy = 0.0
        for value in vals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob*calcshannon(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestinfogain):
            bestinfogain = infoGain
            bestfeature = i
        return bestfeature
创建树

在所有特征使用完时,也没法对数据进行彻底的划分时,就需要使用多数表决来确定叶子节点的分类,代码如下,类似前文中KNN中的排序。

import operator
def majority(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedcount = sorted(classCount.items(),  key=operator.itemgetter(1), reverse=True)
    return sortedcount[0][0]

最后就是创建树的代码:

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majority(classList)
    bestFeat = choose(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del (labels[bestFeat])
    Vals = [example[bestFeat] for example in dataSet]
    uvals = set(Vals)
    for value in uvals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), sublabels)
    return myTree

这里有两个终止递归的条件:一是所有类别能正确的划分了,二是特征使用完成。


3629157-ba381c8538850c3c.jpg
结果

算法优缺点

  • 优点:利于理解
  • 缺点:容易过拟合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值