决策树
决策树模型是一种描述对实例进行分类的树形结构,决策树由节点和有向边组成,节点有两种类型:内部节点和叶节点。内部节点表示一个特征或属性,叶节点表示一个类。
通常决策树的学习包括3个步骤:特征选择、决策树的生成和决策树的修剪。
特征选择:选取对训练数据具有分类能力的特征
通常的准则是信息增益或者信息增益比
1. 信息增益
熵:表示随机变量不确定性的度量。
设X是一个取有限个值得离散随机变量,其概率分布为:
P(X=xi)=pi,i=1,2,...n
P
(
X
=
x
i
)
=
p
i
,
i
=
1
,
2
,
.
.
.
n
, 则X的熵定义为:
H(X)=−∑ni=1pilogpi
H
(
X
)
=
−
∑
i
=
1
n
p
i
l
o
g
p
i
。
熵越大,随机变量的不确定性越大。
计算给定数据集的熵demo:
from math import log
def calcShannonEnt(dataSet):
#实例总数
numEntries = len(dataSet)
#创建字典
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
#记录每个类别出现的次数
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
#计算每个类别出现的概率
prob = float(labelCounts[key])/numEntries
#计算熵
shannonEnt -= prob * log(prob,2)
return shannonEnt
def createDataSet():
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataSet, labels
myDat,labels = createDataSet()
print calcShannonEnt(myDat)
输出结果:
条件熵:
H(Y|X)
H
(
Y
|
X
)
表示在已知随机变量X的条件下随机变量Y的不确定性。
H(Y|X)=−∑ni=1piH(Y|X=xi)
H
(
Y
|
X
)
=
−
∑
i
=
1
n
p
i
H
(
Y
|
X
=
x
i
)
。
信息增益:
g(D,A)=H(D)−H(D|A)
g
(
D
,
A
)
=
H
(
D
)
−
H
(
D
|
A
)
经验熵
H(D)
H
(
D
)
表示对数据集D进行分类的不确定性,经验条件熵
H(D|A)
H
(
D
|
A
)
表示在特征A给定的条件下对数据集D进行分类的不确定性。两者的差为信息增益,表示由于特征A而使得对数据集D的分类不确定减少的程度。
2.划分数据集
对每个特征划分数据集的结果计算一次信息熵, 然后判断按照哪个特征划分数据集是最好的划分方式
#按照给定的特征划分数据集
def splitDataSet(dataSet, axis, value):
#新建list
retDataSet = []
for featVec in dataSet:
#抽取符合特征的数据
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
注意:
Python语言不用考虑内存分配问题 。
Python语言在函数中传递的是列表的引用, 在函数内部对列表对象的修改, 将会影响该列表对象的整个生存周期。为了消除这个不良影响 ,我们需要在函数的开始声明一个新列表对象。
list.extend()和 list.append()区别
执行a.append(b)结果为包含4个元素的list,其中第4个元素也是一个list;
执行a.extend(b)结果为包含6个元素的list.
遍历整个数据集,循环计算熵和splitDataSet函数,找到最好的特征划分方式(信息增益最大的特征)。
#找到信息增益最大的特征
def chooseBestFeaToSplit(dataSet):
numFeas = len(dataSet[0])-1
#计算整个数据集的经验熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeas = -1
#遍历数据集中所有特征
for i in range(numFeas):
#数据集中第i个特征值写入新的list
featList = [example[i] for example in dataSet]
#创建集合,获得唯一属性值
uniqueVals = set(featList)
newEntropy = 0.0
#遍历当前特征中所有唯一的属性值
for value in uniqueVals:
#计算当前特征的条件熵
subDataSet = splitDataSet(dataSet,i,value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
#计算信息增益
infoGain = baseEntropy - newEntropy
#取得最大信息增益
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeas = i
return bestFeas
结果返回第0个特征的信息增益最大:
3.构建决策树
由于特征值可能多于两个,第一次划分后数据被传递到树分支的下一个节点,在这个节点上,再次划分数据,采用递归的方式处理数据。
递归结束的条件是:遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类,如果所有实例具有相同的分类,则得到一个叶子节点。如果数据集已经处理了所有的属性,但是类标签依然不唯一,通常采用多数表决方法决定叶子节点的分类。
#多数表决
def majorityCnt(classList):
classCount = {}
#记录每个类标签出现的频率
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
#排序字典
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
通过递归构决策树:
#构造决策树
def createTree(dataSet,labels):
#数据集所有类标签的列表
classList = [example[-1] for example in dataSet]
#所有类标签相同
if classList.count(classList[0]) == len(classList):
return classList[0]
#所有类标签便利完成
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeaToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
#树的信息用字典存储
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
#遍历当前特征值包含的属性值
for value in uniqueVals:
#复制类标签存储在新list
subLabels = labels[:]
#递归
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree
返回嵌套字典:其中第一个关键字’no surfacing’是第一个划分的特征,第二个关键字是’no surfacing’划分的数据集,这些关键字的值为’no surfacing’的子节点,值有可能是类标签,也有可能是一个数据字典。