问题
设某苗圃对一花木种子制定了5种不同的处理方法,每种方法处理了6粒种子进行育苗试验。一年后观察苗高获得资料如下表。已知除处理方法不同外,其他育苗条件相同且苗高的分布近似于正态、等方差,试以95%的可靠性判断种子的处理方法对苗木生长是否有显著影响。
数据预处理
- 做过方差分析的都知道,先做个假设H0:不同处理方法对苗木生长无显著影响。
-
看下课程老师给的数据
copy出来的格式很不友好,我就写了一个python代码进行转化,代码:
import csv
i = 0
f = open('C://Users/Administrator/Desktop/方差分析.txt','r')
csvfile = open('C://Users/Administrator/Desktop/方差分析.csv','wt',newline='',encoding='utf-8')
writer = csv.writer(csvfile)
for fs in f:
i = i+1
contents_1 = fs.strip()
contents = contents_1.split(', ')
for content in contents:
writer.writerow((content,i))
f.close()
csvfile.close()
可以把数据转化为如下格式,方便在python的方差分析中运行:
Python方差分析
df = pd.read_excel('C:/Users/Administrator/Desktop/方差分析.xls',header=None,names=['value','group'])
d1 = df[df['group']==1]['value']
d2 = df[df['group']==2]['value']
d3 = df[df['group']==3]['value']
d4 = df[df['group']==4]['value']
d5 = df[df['group']==5]['value']
args = [d1,d2,d3,d4,d5]
f,p = stats.f_oneway(*args)
print(f,p)
结果如图:
结论
查表得F0.05(4,25)=2.76,因为F=Sb2/Sw2=4.38﹥F0.05(4,25)=2.76,所以推翻(或者说拒绝)假设H0,即不同的处理方法造成了苗木高生长的差异显著。