概率统计Python计算:双因素无重复试验方差分析

在这里插入图片描述
双因素无重复试验方差分析的数据模型 X X X是一个 r × s r\times s r×s的矩阵, X i j X_{ij} Xij~ N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2)。令 X ‾ = 1 r s ∑ i = 1 r ∑ j = 1 s X i j \overline{X}=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^{s}X_{ij} X=rs1i=1rj=1sXij X ‾ i ⋅ = 1 r ∑ j = 1 s X i j \overline{X}_{i\cdot}=\frac{1}{r}\sum\limits_{j=1}^{s}X_{ij} Xi=r1j=1sXij X ‾ ⋅ j = 1 r ∑ i = 1 r X i j \overline{X}_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^{r}X_{ij} Xj=r1i=1rXij i = 1 , 2 , ⋅ , r , j = 1 , 2 , ⋯   , s i=1,2,\cdot,r,j=1,2,\cdots,s i=1,2,,r,j=1,2,,s。与双因素等重复试验方差分析相仿,样本数据总变差 S T = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ ) 2 S_T=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X})^2 ST=i=1rj=1s(XijX)2,可分解为因素 A A A的效应平方和 S A = s ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=s\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=si=1r(XiX)2,因素 B B B的效应平方和 S B = r ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=r\sum\limits_{j=1}^{s}(\overline{X}_{\cdot j}-\overline{X})^2 SB=rj=1s(XjX)2,误差平方和 S E = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_E=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SE=i=1rj=1s(XijXiXj+X)2之和,即
S T = S A + S B + S E . S_T=S_A+S_B+S_E. ST=SA+SB+SE.
利用这些数据,希望在显著水平 α \alpha α下检验假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯   , r , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯   , s . H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s. H01:μiμ=0,i=1,2,,r,H02:μjμ=0,j=1,2,,s.
其中, μ i ⋅ = 1 s ∑ j = 1 s μ i j , i = 1 , 2 , ⋯   , r \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij}, i=1,2,\cdots,r μi=s1j=1sμij,i=1,2,,r μ ⋅ j = ∑ i = 1 r μ i j , j = 1 , 2 , ⋯   , s \mu_{\cdot j}=\sum\limits_{i=1}^r\mu_{ij},j=1,2,\cdots,s μj=i=1rμij,j=1,2,,s μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}\mu_{ij} μ=rs1i=1rj=1sμij
下列代码定义计算双因素无重复试验方差分析的函数。

def dfeVarAnal1(X, alpha):
    r,s=X.shape									#模型数据结构
    Xi_bar=X.mean(axis=1).reshape(r, 1)			#A因素样本均值
    Xj_bar=X.mean(axis=0).reshape(1, s)			#B因素样本均值
    Xt_bar=X.mean()								#样本总均值
    ST=((X-Xt_bar)**2).sum()					#总变差
    SA=s*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和
    SB=r*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和
    SE=ST-SA-SB									#误差平方和
    F1=(s-1)*SA/SE								#H01检验统计量值
    accept1=ftestR(F1, r-1, (r-1)*(s-1), alpha)	#检验H01
    F2=(r-1)*SB/SE								#H02检验统计量值
    accept2=ftestR(F2, s-1, (r-1)*(s-1), alpha)	#检验H02
    return (accept1, accept2)

函数dfeVarAnal1的参数X表示双因素无重复试验方差分析的数据模型 X X X,alpha表示显著水平 α \alpha α。第2行计算数据模型的结构行数s,列数t。第3行计算因素A的各个水平对应的样本均值 ( X ‾ 1 ⋅ , X ‾ 2 ⋅ , ⋯   , X ‾ r ⋅ ) T (\overline{X}_{1\cdot},\overline{X}_{2\cdot},\cdots,\overline{X}_{r\cdot})^T (X1,X2,,Xr)T,第4行计算因素B各水平对应的样本均值 ( X ‾ ⋅ 1 , X ‾ ⋅ 2 , ⋯   , X ‾ ⋅ s ) (\overline{X}_{\cdot1},\overline{X}_{\cdot2},\cdots,\overline{X}_{\cdot s}) (X1,X2,,Xs),第5行计算样本总均值 X ‾ \overline{X} X,第6~9行分别计算 S T S_T ST S A S_A SA S B S_B SB S E S_E SE。第10行计算假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SA/(r1)~ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F(r-1,(r-1)(s-1)) F(r1,(r1)(s1)),第11行调用函数ftestR计算 H 01 H_{01} H01的右侧检验。第12行计算 H 02 H_{02} H02的检验统计量 S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SB/(s1)~ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F(s-1,(r-1)(s-1)) F(s1,(r1)(s1)),第13行计算 H 02 H_{02} H02的右侧检验。
例1 在四个不同时间,五个不同地点测得空气中的颗粒状物含量( m g / m 3 mg/m^3 mg/m3)如下

地点 B 1 B_1 B1地点 B 2 B_2 B2地点 B 3 B_3 B3地点 B 4 B_4 B4地点 B 5 B_5 B5
时间 A 1 A_1 A17667815651
时间 A 2 A_2 A28269965970
时间 A 3 A_3 A36859675442
时间 A 4 A_4 A46356645837

假定在第 i i i个时间,第 j j j个地点空气中颗粒物含量服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 , 1 ≤ j ≤ 5 1\leq i\leq4,1\leq j\leq5 1i4,1j5。试在显著水平 α = 0.05 \alpha=0.05 α=0.05下检验:在不同时间下颗粒物含量的均值有无显著差异,在不同地点下颗粒物含量的均值有无显著差异。
解: 按题意,需在显著水平 α = 0 , 05 \alpha=0,05 α=0,05下检验
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯   , 4 , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯   , 5. H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,4,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,5. H01:μiμ=0,i=1,2,,4,H02:μjμ=0,j=1,2,,5.
下列代码完成本例计算。

import numpy as np					#导入numpy
alpha=0.05							#显著水平
X=np.array([[76, 67, 81, 56, 51],	#试验样本数据
          [82, 69, 96, 59, 70],
          [68, 59, 67, 54, 42],
          [63, 56, 64, 58, 37]])
H0=dfeVarAnal1(X, alpha)			#双因素无重复试验方差分析
print(H0)

运行程序,输出

(False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02。即时间和地点都显著地影响空气中的颗粒物含量。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

Python计算概率质量函数(PMF,Probability Mass Function)的不确定度通常涉及到统计学和概率论的知识。不确定度通常是通过计算统计量的标准误差来得到的。对于离散概率分布,例如二项分布、泊松分布等,计算PMF的不确定度可以采用以下步骤: 1. 确定PMF:对于给定的离散随机变量,首先需要确定其概率质量函数,即每个事件的概率。 2. 样本数据:使用样本数据计算出感兴趣的统计量,比如期望值(均值)。 3. 标准误差计算:对于期望值的估计的标准误差(SE),可以通过下面的公式计算: SE = sqrt( (Σ(xi - μ)^2 * pi) / N ) / N 其中,xi表示随机变量的取值,μ表示分布的期望值,pi表示xi的PMF值,N表示样本大小。 4. 应用公式:将实际的PMF值和样本数据代入上述公式,计算标准误差,从而得到不确定度。 以下是一个简化的示例,计算二项分布PMF的标准误差: ```python import math # 定义二项分布的参数 n = 10 # 试验次数 p = 0.5 # 成功的概率 # 计算期望值 mean = n * p # 计算标准误差 variance = n * p * (1 - p) # 方差 std_error = math.sqrt(variance) / n # 标准误差 print("标准误差是:", std_error) ``` 在这个例子中,我们使用了二项分布的性质来直接计算方差,然后通过方差求标准误差。注意,这里假设成功概率`p`是已知的,实际情况中可能需要根据样本数据估计`p`。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值