实时的神经网络:Faster-RCNN技术分析

         转载请说明出处 http://blog.csdn.net/luopingfeng/article/details/51245694 谢谢!
        自2015以来,人工智能在计算机视觉领域(人脸识别\物体分类\图片描述)已经超越人类的识别正确率和速度,而关于速度的提升,不得不提RGB的开山之作(Faster-RCNN)   .
       先来个概述:Faster-RCNN通过交叉训练方式,共享 卷积特征,从而大幅缩减了训练参数(原文描述为RPN cost-free)------ 除了CNN网络架构本身具有的权值共享,在RGB的论文里我们再次感受到共享思想的伟大:通过交替训练两个类型的网络达到(cost-free)!
        当然,从实验数据来看:也取得了近乎real-time的性能,真是“Deep learning 搞定一切vision task”.另外, 我也基于该技术做了一个实时场景分析和描述的人工智能系统:先进行场景中各类物体的识别(Faster-RCNN),再使用自然语言描述(LSTM),(即具备感知(识别物体)和认知能力(学习如何去表达)). 点击打开链接    效果如论文所述"waives nearly all computational burdens of Selective Search at test-time—the effective running time for proposals is just 10 milliseconds."
          


INTRODUCTION

          首先,论文回顾Fast-RCNN:与典型的RCNN不同的是,典型的RCNN使用Selective Search;而Fast-RCNN使用EdgeBoxes。直接取得性能上的优势,论文给出的数据是,Selective Search:2 seconds per image,而使用EdgeBoxes是0.2 seconds per image,也就是Fast-RCNN提高了十倍的速度.

          然后, 论文指出Faster-RCNN( 可以看做是对 Fast-RCNN 的再次改进版):主要解决的是如何在RPN网络中快速获得 proposal, 作者在他的论文中提出,卷积后的特征图其实是可以用来生成 region proposals ! 所以,作者通过增加两个独立\平行的全连接层来实现 Region Proposal Networks (RPN) , 一个用来以回归方式生成推荐区域(region bounds),另一个则是objectness score。

          接着,作者強調:为了面对平移(缩放)不变性,经典做法有:对输入图片或者卷积网络里的滤波器进行整体尺度\矩形长宽比例的采样;而作者的做法是:对推荐区域(novel “anchor” boxes)进行尺度\矩形比例的采样.结果是,对推荐区域采样的模型,不管是速度还是准确率都取得很好的性能.

          最后,为了将fully-convolutional network (FCN)的RPN  与  Fast-RCNN 相结合,作者给出了一种简单的训练方法:固定 proposals数目, 为训练RPN和Fast-RCNN, 这两个训练的task交替微调网络 ,交替过程实现卷积特征共享----注意这里就是大招!!!因此不需要重复的卷积计算, 共享卷积特征也让两个网络快速地收敛,所以,大幅地提高了网络的训练和测试(应用)速度------这就是Faster-RCNN的优势所在, 一种优雅并且高效的方案.


Region Proposal Networks

          RPN的目的是实现"attention"机制,告诉后续的扮演检测\识别\分类角色的Fast-RCNN应该注意哪些区域,它从任意尺寸的图片中得到一系列的带有 objectness score 的 object proposals。具体流程是:使用一个小的网络在已经进行通过卷积计算得到的feature map上进行滑动扫描,这个小的网络每次在一个feature map上的一个窗口进行滑动(这个窗口大小为n*n----在这里,再次看到神经网络中用于缩减网络训练参数的局部感知策略receptive field,通常n=228在VGG-16,而作者论文使用n=3),滑动操作后映射到一个低维向量(例如256D或512D,这里说256或512是低维,有些同学发邮件问我:n=3,n*n=9,为什么256是低维呢?那么解释一下:低维相对不是指窗口大小,窗口是用来滑动的!256相对的是a convolutional feature map of a size W × H (typically ∼2,400),而2400这个特征数很大,所以说256是低维.另外需要明白的是:这里的256维里的每一个数都是一个Anchor(由2400的特征数滑动后操作后,再进行压缩))最后将这个低维向量送入到两个独立\平行的全连接层:box回归层(a box-regression layer (reg))和box分类层(a box-classification layer (cls))。如下图所示:




Translation-Invariant Anchors

       在计算机视觉中的一个挑战就是平移不变性:比如人脸识别任务中,小的人脸(24*24的分辨率)和大的人脸(1080*720)如何在同一个训练好权值的网络中都能正确识别. 传统有两种主流的解决方式,第一:对图像或feature map层进行尺度\宽高的采样;第二,对滤波器进行尺度\宽高的采样(或可以认为是滑动窗口). 但作者的解决该问题的具体实现是:通过卷积核中心(用来生成推荐窗口的Anchor)进行尺度、宽高比的采样。如上图右边,文中使用了3 scales and 3 aspect ratios (1:1,1:2,2:1), 就产生了 k = 9 anchors at each sliding position. 


A Loss Function for Learning Region Proposals

         anchors(卷积核的中心)分为两类:与ground-truth box 有较高的 IoU 或 与任意一个 ground-truth box 的 IoU 大于0.7 的 anchor 都标为 positive label; 与所有 ground-truth box 的IoU 都小于0.3的 anchor 都标为 negative label。其余非正非负的都被丢掉。 
对于每一个 anchor box i, 其 loss function 定义为: 
         L(pi,ti)

  • 9
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 20
    评论
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值