【C++】图解AVL树

一、概念

  我们之前了解了二叉搜索树,虽然它可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-VelskiiE.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一颗AVL树是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1

    这里我们要回顾一下二叉树节点的高度和深度,很多初学者会混淆两个概念。简单来说,高度是从下往上数,深度是从上往下数,二者是相反的表示。
    在这里插入图片描述
    关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,这里我们不做探讨。

二、模拟实现

2.1 AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode(const pair<K, V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}

	AVLTreeNode<K, V>* _left;   // 该节点的左孩子
	AVLTreeNode<K, V>* _right;  // 该节点的右孩子
	AVLTreeNode<K, V>* _parent; // 该节点的双亲
	pair<K, V> _kv;
	int _bf;                    // 该节点的平衡因子
};

2.2 AVL树的定义

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		: _root(nullptr)
	{}
	
private:
	Node* _root;
	long long prev = LONG_MIN;
};

2.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
bool Insert(const pair<K, V>& kv)
{
	// 树为空,直接插入
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		// 根据二叉搜索树的规则确定插入位置
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	
	// 按照二叉搜索树的规则将节点插入到AVL树中
	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	// 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子
	while (parent)
	{
		// cur插入后,parent的平衡因子一定需要调整子
		if (parent->_left == cur) // cur插入到parent的左侧,只需给parent的平衡因子-1即可
			parent->_bf--;
		else                      // cur插入到parent的右侧,只需给parent的平衡因子+1即可
			parent->_bf++;
		
		// 此时:parent的平衡因子可能有三种情况:0,±1,±2
		if (parent->_bf == 0)
		{
			// parent的平衡因子为0,说明插入之前parent的平衡因子为±1,此时满足AVL树的性质,插入成功
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// parent的平衡因子为±1,说明插入前parent的平衡因子一定为0,此时以parent为根的树的高度增加,需要继续向上更新
			cur = parent;
			parent = parent->_parent;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			// parent的平衡因子为±2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理
			if (parent->_bf == 2 && cur->_bf == 1)
			{
				RotateL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == -1)
			{
				RotateR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == -1)
			{
				RotateRL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RotateLR(parent);
			}

			break;
		}
		else
		{
			assert(false);
		}
	}

	return true;
}

2.4 AVL树的旋转

  在上述插入的几种情况中,parent的平衡因子变为±2是我们比较难处理的,它违反了平衡树的性质,需要进行旋转。但是不用着急,我们先来简单认识一下四种类型,它们是根据插入节点位置的不同来划分的:
在这里插入图片描述

2.4.1 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

  插入前,以60为根的二叉树是平衡的,平衡因子为-1;插入新节点后,60的平衡因子变成了-2,而它的左子树的平衡因子变成了-1,说明60左子树的高度更高,需要将60顺时针旋转才能保持平衡。

  旋转遵循二叉搜索树的原则,30<b<60,将b作为60的左子树,60作为30的右子树,旋转完成后,更新节点的平衡因子即可。
  在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在.
2. 60可能是根节点,也可能是子树。如果是根节点,旋转完成后,要更新根节点;如果是子树,可能是某个节点的左子树,也可能是右子树。

void RotateR(Node* parent)
{
	// subL: parent的左孩子
    // subLR: parent左孩子的右孩子,注意:subLR可能不存在
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	
	// 旋转完成之后,30 的右孩子作为 60 的左孩子
	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;
	
	// 因为 60 可能是棵子树,因此在更新其双亲前必须先保存 60 的双亲
	Node* grandfather = parent->_parent;
	
	// 60 作为 30 的右孩子
	subL->_right = parent;
	
	// 更新 60 的双亲
	parent->_parent = subL;

	// 如果 60 是根节点,更新根节点
	if (parent == _root)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		 // 如果 60 是子树,可能是其双亲的左子树,也可能是右子树
		if (grandfather->_left == parent)
		{
			grandfather->_left = subL;
		}
		else
		{
			grandfather->_right = subL;
		}
		
		// 更新30的双亲
		subL->_parent = grandfather;
	}

	// 根据调整后的结构更新部分节点的平衡因子
	parent->_bf = subL->_bf = 0;
}

右单旋后的结果为:
在这里插入图片描述

2.4.2 新节点插入较高右子树的右侧—右右:左单旋

  左单旋与右单旋完全相反,我们直接上图:
在这里插入图片描述

void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	Node* grandfather = parent->_parent;
	subR->_left = parent;
	parent->_parent = subR;

	if (parent == _root)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else
	{
		if (grandfather->_left == parent)
		{
			grandfather->_left = subR;
		}
		else
		{
			grandfather->_right = subR;
		}
		subR->_parent = grandfather;
	}

	parent->_bf = subR->_bf = 0;
}

2.4.3 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

  这种情况对应2.4里的第二幅图——LR型,C是待插入节点或者待插入的子树,我们先来看插入前子树的图片:
在这里插入图片描述

看图分析一下:90是A,30是B,60是C,当h等于1时,60就是新插入节点。这里我们分析h>=1的情况,继续上图:

在这里插入图片描述

值得注意的是,旋转之前,60的平衡因子可能是-1/0/1三种情况(上图实线和虚线分别代表的是-1和1),所以在旋转之前要对60的平衡因子做记录。

根据二叉搜素树的规则,30<b<60<c<90,让b去作30的右子树,30作为60的左子树;然后再让c去作90的左子树,90作为60的右子树。整个思路就是将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	
	// 旋转之前,保存subLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = subLR->_bf;
	
	// 先对 30 进行左单旋
	RotateL(parent->_left);

	// 再对 90 进行右单旋
	RotateR(parent);

	if (bf == -1)
	{
		parent->_bf = 1;
	}
	else if (bf == 1)
	{
		subL->_bf = -1;
	}
}

在这里插入图片描述

2.4.4 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	if (bf == -1)
		subR->_bf = 1;
	else if (bf == 1)
		parent->_bf = -1;
}

总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
  • 当psubR的平衡因子为1时,执行左单旋
  • 当psubR的平衡因子为-1时,执行右左双旋
  1. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为psubL
  • 当psubL的平衡因子为-1是,执行右单旋
  • 当psubL的平衡因子为1时,执行左右双旋

旋转完成后,原parent为根的子树的高度降低,已经平衡,不需要再向上更新。

2.5 AVL树的验证

  AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
bool IsBSTree()
{
	return _IsBSTree(_root);
}

bool _IsBSTree(Node* root)
{
	if (root == nullptr) return true;
	bool left = _IsBSTree(root->_left);
	if (root->_kv.first <= prev)
		return false;
	prev = root->_kv.first;
	bool right = _IsBSTree(root->_right);
	return left && right;
}

prev是我们定义的一个类成员变量,默认大小是LONG_MIN,属于类的实例化对象,在程序中可以看成是一个全局变量,维护中序遍历的最大值。通过比较prev与当前节点的值来验证是否是二叉搜索树。

  1. 验证其为平衡树
bool isBalanced()
{
	return _isBalanced(_root);
}

int Height(Node* root) {
	if (root == nullptr)
		return 0;
	int left = Height(root->_left);
	int right = Height(root->_right);
	if (left == -1 || right == -1 || abs(left - right) > 1)
		return -1;
	return max(left, right) + 1;
}

bool _isBalanced(Node* root)
{
	return Height(root) >= 0;
}

上面的写法采用的是后序遍历的方式。前序遍历对于同一个节点会多次求它的高度,而后序遍历对每一个节点返回它的高度(非负数);如果以这个节点为根的子树不是平衡树,返回-1。

三、AVL树的性能

  AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值