【HAOI2018】染色【反向二项式反演】【NTT卷积】

传送门

题意: N N N个位置染 M M M种颜色,恰好出现 S S S次的颜色数量恰好为 k k k时的愉悦度为 w k w_k wk,求所有方案的愉悦度之和。对 1004535809 1004535809 1004535809取模。

N ≤ 1 e 7 N \leq 1e7 N1e7, M ≤ 1 e 5 M \leq 1e5 M1e5, S ≤ 150 S \leq 150 S150

本题的恶心之处在于满足颜色数量要求恰好为 k k k

试着求求至少为 k k k的方案数。

一个显然的想法:钦点 k k k种颜色刚好填 S S S次,剩下位置随便填其他颜色。

即:

f ( k ) = ( M k ) ( N S ) ( N − S S ) . . . . . . ( N − ( k − 1 ) S S ) ( M − k ) N − k S f(k)=\binom{M}{k}\binom{N}{S}\binom{N-S}{S}......\binom{N-(k-1)S}{S}(M-k)^{N-kS} f(k)=(kM)(SN)(SNS)......(SN(k1)S)(Mk)NkS

= ( M k ) N ! S ! ( N − S ) ! ( N − S ) ! S ! ( N − 2 S ) ! . . . . . . [ N − ( k − 1 ) S ] ! S ! ( N − k S ) ! ( M − k ) N − k S =\binom{M}{k}\frac{N!}{S!(N-S)!}\frac{(N-S)!}{S!(N-2S)!}......\frac{[N-(k-1)S]!}{S!(N-kS)!}(M-k)^{N-kS} =(kM)S!(NS)!N!S!(N2S)!(NS)!......S!(NkS)![N(k1)S]!(Mk)NkS

= ( M k ) N ! ( M − k ) N − k S ( S ! ) k ( N − k S ) ! =\binom{M}{k}\frac{N!(M-k)^{N-kS}}{(S!)^k(N-kS)!} =(kM)(S!)k(NkS)!N!(Mk)NkS

虽然很鬼畜,但是可以快速求出来。

但这个求出来是假的,因为剩下位置填其他颜色的时候一不小心就刚好填了 S S S次,但这个在之后会重复计算。也就是说,一个方案会计算 ( 实 际 刚 好 为 S 的 颜 色 数 k ) \binom{实际刚好为S的颜色数}{k} (kS)次。所以似乎没有组合意义。

不过还是能用的。

设答案即恰好 k k k种的方案数 g ( k ) g(k) g(k)

为了描述方便,设 n = m i n ( n , N / S ) n=min(n,N/S) n=min(n,N/S),即填 S S S个的颜色最多多少个。

得到关系式

f ( k ) = ∑ i = k n ( i k ) g ( i ) f(k)=\sum_{i=k}^n\binom{i}{k}g(i) f(k)=i=kn(ki)g(i)

另一个方向的二项式反演?

g ( k ) = ∑ i = k n [ i − k = 0 ] ( i k ) g ( i ) g(k)=\sum_{i=k}^n[i-k=0]\binom{i}{k}g(i) g(k)=i=kn[ik=0](ki)g(i)

g ( k ) = ∑ i = k n ∑ j = 0 i − k ( − 1 ) j ( i − k j ) ( i k ) g ( i ) g(k)=\sum_{i=k}^n\sum_{j=0}^{i-k}(-1)^j\binom{i-k}{j}\binom{i}{k}g(i) g(k)=i=knj=0ik(1)j(jik)(ki)g(i)

你会发现用之前的路子行不通了

为了找到这一步怎么推,你可以把结论代回去,然后你得到了这个东西:

( i − k j ) ( i k ) = ( i j + k ) ( j + k k ) \binom{i-k}{j}\binom{i}{k}=\binom{i}{j+k}\binom{j+k}{k} (jik)(ki)=(j+ki)(kj+k)

理性证明:

( i − k ) ! j ! ( i − j − k ) ! i ! k ! ( i − k ) ! = i ! ( j + k ) ! ( i − j − k ) ! ( j + k ) ! j ! k ! \frac{(i-k)!}{j!(i-j-k)!}\frac{i!}{k!(i-k)!}=\frac{i!}{(j+k)!(i-j-k)!}\frac{(j+k)!}{j!k!} j!(ijk)!(ik)!k!(ik)!i!=(j+k)!(ijk)!i!j!k!(j+k)!

感性证明:

i i i个数选 j + k j+k j+k个数再选 k k k个数,等价于直接选 k k k个再在剩下的选出 j j j个作为中间商赚差价

g ( k ) = ∑ i = k n ∑ j = 0 i − k ( − 1 ) j ( i j + k ) ( j + k k ) g ( i ) g(k)=\sum_{i=k}^n\sum_{j=0}^{i-k}(-1)^j\binom{i}{j+k}\binom{j+k}{k}g(i) g(k)=i=knj=0ik(1)j(j+ki)(kj+k)g(i)

j j j加上 k k k

g ( k ) = ∑ i = k n ∑ j = k i ( − 1 ) j − k ( i j ) ( j k ) g ( i ) g(k)=\sum_{i=k}^n\sum_{j=k}^{i}(-1)^{j-k}\binom{i}{j}\binom{j}{k}g(i) g(k)=i=knj=ki(1)jk(ji)(kj)g(i)

交换求和顺序

g ( k ) = ∑ j = k n ( − 1 ) j − k ( j k ) ∑ i = j n ( i j ) g ( i ) g(k)=\sum_{j=k}^n(-1)^{j-k}\binom{j}{k}\sum_{i=j}^{n}\binom{i}{j}g(i) g(k)=j=kn(1)jk(kj)i=jn(ji)g(i)

g ( k ) = ∑ j = k n ( − 1 ) j − k ( j k ) f ( j ) g(k)=\sum_{j=k}^n(-1)^{j-k}\binom{j}{k}f(j) g(k)=j=kn(1)jk(kj)f(j)

g ( k ) = ∑ i = k n ( − 1 ) i − k ( i k ) f ( i ) g(k)=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}f(i) g(k)=i=kn(1)ik(ki)f(i)

回到之前的问题,我们现在要求所有 g ( k ) g(k) g(k)

套路性的拆组合数

g ( k ) = ∑ i = k n ( − 1 ) i − k i ! k ! ( i − k ) ! f ( i ) g(k)=\sum_{i=k}^n(-1)^{i-k}\frac{i!}{k!(i-k)!}f(i) g(k)=i=kn(1)ikk!(ik)!i!f(i)

k ! g ( k ) = ∑ i = k n ( − 1 ) i − k ( i − k ) ! i ! f ( i ) k!g(k)=\sum_{i=k}^n\frac{(-1)^{i-k}}{(i-k)!}i!f(i) k!g(k)=i=kn(ik)!(1)iki!f(i)

出现了!卷积君!

翻一下 i ! f ( i ) i!f(i) i!f(i)

k ! g ( k ) = ∑ i = k n ( − 1 ) i − k ( i − k ) ! ( n − i ) ! f ( n − i ) k!g(k)=\sum_{i=k}^n\frac{(-1)^{i-k}}{(i-k)!}(n-i)!f(n-i) k!g(k)=i=kn(ik)!(1)ik(ni)!f(ni)

卷出来是 n − k n-k nk,再翻一下除以 k ! k! k!就是答案。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#define MAXN 262144
#define MAXM 10000005
using namespace std;
const int MOD=1004535809;//479*2^21+1
typedef long long ll;
int fac[MAXM],finv[MAXM];
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD;p>>=1;
	}
	return ans;
}
#define inv(x) qpow(x,MOD-2)
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
int r[MAXN],rt[2][22];
inline void init(const int& l){for (int i=0;i<(1<<l);i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));}
void NTT(int* a,int l,int type)
{
	int lim=1<<l;
	for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);
	for (int L=0;L<l;L++)
	{
		int mid=1<<L,len=mid<<1;
		int Wn=rt[type][L+1];
		for (int s=0;s<lim;s+=len)
			for (int k=0,w=1;k<mid;k++,w=(ll)w*Wn%MOD)
			{
				int x=a[s+k],y=(ll)w*a[s+mid+k]%MOD;
				a[s+k]=add(x,y);a[s+mid+k]=dec(x,y);
			}
	}
	if (type)
	{
		int t=inv(lim);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*t%MOD;
	}
}
int f[MAXN],g[MAXN];
int main()
{
	rt[0][21]=qpow(3,479);rt[1][21]=inv(rt[0][21]);
	for (int i=20;i>=0;i--) 
	{
		rt[0][i]=(ll)rt[0][i+1]*rt[0][i+1]%MOD;
		rt[1][i]=(ll)rt[1][i+1]*rt[1][i+1]%MOD;
	}
	int n,m,s;
	scanf("%d%d%d",&n,&m,&s);
	int lim=min(m,n/s),N=max(n,m);
	fac[0]=1;
	for (int i=1;i<=N;i++) fac[i]=(ll)fac[i-1]*i%MOD;
	finv[N]=inv(fac[N]);
	for (int i=N-1;i>=0;i--) finv[i]=(ll)finv[i+1]*(i+1)%MOD;
	int l=0;
	while ((1<<l)<=(lim<<1)) ++l;
	init(l);
	for (int i=0;i<=lim;i++) f[i]=(ll)fac[m]*fac[n]%MOD*qpow(m-i,n-s*i)%MOD*finv[m-i]%MOD*finv[n-s*i]%MOD*qpow(finv[s],i)%MOD;
	reverse(f,f+lim+1);
	for (int i=0;i<=lim;i++) g[i]=((i&1)? MOD-finv[i]:finv[i]);
	NTT(f,l,0);NTT(g,l,0);
	for (int i=0;i<(1<<l);i++) f[i]=(ll)f[i]*g[i]%MOD;
	NTT(f,l,1);
	reverse(f,f+lim+1);
	for (int i=0;i<=lim;i++) f[i]=(ll)f[i]*finv[i]%MOD;
	int ans=0;
	for (int i=0;i<=lim;i++)
	{
		int w;
		scanf("%d",&w);
		ans=add(ans,(ll)w*f[i]%MOD);
	}
//	for (int i=0;i<=lim;i++)
//	{
//		int sum=0;
//		for (int j=i;j<=lim;j++) sum=add(sum,(ll)(((j-i)&1)? MOD-fac[j]:fac[j])*finv[j-i]%MOD*f[j]%MOD);
//		int w;
//		scanf("%d",&w);
//		ans=add(ans,(ll)w*finv[i]%MOD*sum%MOD);
//	}
	printf("%d\n",ans);
	return 0;
} 
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值