【THUSC 2017】如果奇迹有颜色【polya引理】【矩阵】【计数dp】【BM打表+线性递推】

题意:长度为 n n n 的环染 m m m 种颜色,要求任意相邻 m m m 个元素不能包含全部的颜色。求方案数 模 1 0 9 + 7 10^9+7 109+7,循环同构。

n ≤ 1 0 9 , m ≤ 7 n\leq 10^9,m\leq7 n109,m7

为啥我现在天天都在打表啊

先上 polya,对于移动 i i i 位的置换不动点个数为 gcd ⁡ ( i , n ) \gcd(i,n) gcd(i,n)。而因为这个也是循环的,所以可以把每相邻的 n / gcd ⁡ ( i , n ) n/\gcd(i,n) n/gcd(i,n) 个看成一个环。设 f ( n ) f(n) f(n) 表示循环不同构的方案,显然答案就是

∑ d ∣ n f ( d ) φ ( n d ) \sum_{d\mid n}f(d)\varphi(\frac nd) dnf(d)φ(dn)

这样就把循环同构搞掉了。

然后有一个暴力的dp: f ( i , S ) f(i,S) f(i,S) 表示填了 i i i 个数,最后 m m m 个的颜色状态是 S S S,枚举开头 m m m 个转移到最后再看合不合法。

发现这个 dp 是个矩阵的形式。有个很强的结论:存在 n n n 阶矩阵递推等价于存在 n n n 阶线性递推。这个矩阵递推可以有很多含义,包括任意元素、所有元素的和,甚至矩阵本身。

也就是说,尽管这个限制很多,我们也有(xia)理(j)由(b)相(cai)信(xiang)这个 f f f 一定存在不超过 m m m^m mm 次的线性递推式。然后你就可以打表BM线性递推一条龙服务了。

但是这个暴力 dp 实在太慢了,你光枚举开始状态都有 m m m^m mm ,后面再怎么都至少有个 m m m^m mm,写得不好可能还要多个 m m m^m mm,可能不能在可预见的时间内跑出来。考虑做点优化。

上面已经看出来了,复杂度瓶颈其实在枚举开头,考虑这部分怎么优化。注意到如果开头枚举的 m m m 个数中有相同的,那么结尾的时候检查就不用到这里了,也就是开头剩下的怎么填都不影响合法性。而之前的还可以重标号搞掉。

具体而言,我们枚举一个 w w w 表示开头有多少个连续的不同的数,即对于 i ∈ [ 1 , w ] , a i = i i\in[1,w],a_i=i i[1,w],ai=i。然后后面一个数钦定与前面的相同,即 a i + 1 ∈ [ 1 , w ] a_{i+1}\in [1,w] ai+1[1,w]。之后就可以正常转移了。最后再乘上个 m w ‾ m^{\underline w} mw 加起来就是答案。

这样复杂度到了 O ( N ⋅ m m ⋅ poly ⁡ ( m ) ) O(N\cdot m^m\cdot \operatorname{poly}(m)) O(Nmmpoly(m)),其中 N N N 为打前多少个数的表,考场上根据你的梦想和人品来决定,这里打了 1000 1000 1000 个。因为懒得进一步优化,就直接跑 55 min ⁡ 55\min 55min 跑出来了,但我看其他人只跑了几十秒……

然后就是套板子的事情了。

暴力求 f f f

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 1000005
using namespace std;
const int MOD=1e9+7,N=1000;
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
typedef long long ll;
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD,p>>=1;
	}
	return ans;
}
int m,a[10],MAX,vis[MAXN];
inline bool check(int x)
{
	if (~vis[x]) return vis[x];
	for (int i=0;i<m;i++) a[i]=0;
	int t=x;
	for (int i=0;i<m;i++)
	{
		a[x%m]=1;
		x/=m;
	}
	for (int i=0;i<m;i++) if (!a[i]) return (vis[t]=1);
	return (vis[t]=0);
}
int cur[MAXN],t[MAXN],ans[MAXN];
inline void solve()
{
	for (int w=1;w<m;w++)
	{
		int st=0;
		for (int i=1;i<=w;i++) st=st*m+i;
		for (int k=1;k<=w;k++)
		{
			for (int i=0;i<MAX;i++) cur[i]=0;
			cur[st*m+k]=1;
			int tmp=0;
			for (int tt=st*m+k,j=1;j<=w+1;tt=(tt*m+(j>w? k:j))%MAX,j++)
				if (!check(tt))
					goto end1;
			tmp=add(tmp,1);
			end1:;
			for (int i=m;i>=m-w+1;i--) tmp=(ll)tmp*i%MOD;
			ans[w+1]=add(ans[w+1],tmp);
			for (int T=1;T<=N-w-1;T++)
			{
				for (int i=0;i<MAX;i++) t[i]=0;
				for (int i=0;i<MAX;i++)
					if (check(i))
						for (int v=0;v<m;v++)
						{
							int j=(i*m+v)%MAX;
							if (check(j)) t[j]=add(t[j],cur[i]);
						}
				for (int i=0;i<MAX;i++) cur[i]=t[i];
				int tmp=0;
				for (int i=0;i<MAX;i++)
				{
					for (int t=i,j=1;j<=w+1;t=(t*m+(j>w? k:j))%MAX,j++)
						if (!check(t))
							goto end;
					tmp=add(tmp,cur[i]);
					end:;
				}
				for (int i=m;i>=m-w+1;i--) tmp=(ll)tmp*i%MOD;
				ans[T+w+1]=add(ans[T+w+1],tmp);
//				if (T+w+1==m+1) ans[m]=add(ans[m],tmp);
			}
		}
	}
}
int main()
{
	memset(vis,-1,sizeof(vis));
	cin>>m;
	MAX=qpow(m,m);
	printf("%d\n",N);
	solve();
	for (int i=1;i<m;i++) ans[i]=qpow(m,i);
	for (int i=1;i<=N;i++) printf("%d ",ans[i]); 
	return 0;
}

找递推式:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 2005
using namespace std;
inline int read()
{
	int ans=0;
	char c=getchar();
	while (!isdigit(c)) c=getchar();
	while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
	return ans;
}
const int MOD=1e9+7;
typedef long long ll;
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD,p>>=1;
	}
	return ans;
}
int n,m,F[MAXN],R[MAXN],las[MAXN],p,delta,tmp[MAXN];
int main()
{
	n=read();
	for (int i=1;i<=n;i++) F[i]=read();
	for (int k=1;k<=n;k++)
	{
		int res=0;
		for (int i=1;i<=R[0];i++) res=(res+(ll)F[k-i]*R[i])%MOD;
		if (res==F[k]) continue;
		if (!R[0]){R[0]=p=k,delta=F[k];continue;}
		memcpy(tmp,R,sizeof(tmp));
		int x=(ll)dec(F[k],res)*qpow(delta,MOD-2)%MOD;
		R[k-p]=add(R[k-p],x);
		for (int i=1;i<=las[0];i++) R[k-p+i]=dec(R[k-p+i],(ll)las[i]*x%MOD);
		R[0]=max(R[0],k+las[0]-p);
		memcpy(las,tmp,sizeof(las)),delta=dec(F[k],res),p=k;
	}
	printf("%d\n",R[0]);
	for (int i=1;i<=R[0];i++) printf("%d%c",F[i],",\n"[i==R[0]]);
	for (int i=1;i<=R[0];i++) printf("%d%c",R[i],",\n"[i==R[0]]);
	return 0;
}

交上去的程序:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
using namespace std;
const int len[]={0,0,1,7,18,47,134,413};
const int S[][500]=;
const int R[][500]=;
const int MOD=1e9+7;
typedef long long ll;
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD;p>>=1;
	}
	return ans;
}
int m,F[1000],ans[1000],cur[1000],t[1000];
inline void mul(int* F,int* G)
{
	for (int i=0;i<=(len[m]<<1);i++) t[i]=0;
	for (int i=0;i<=len[m];i++)
		for (int j=0;j<=len[m];j++)
			t[i+j]=(t[i+j]+(ll)F[i]*G[j])%MOD;
	for (int i=0;i<=(len[m]<<1);i++) F[i]=t[i];
	for (int i=(len[m]<<1);i>len[m];i--)
		if (F[i])
		{
			for (int j=1;j<=len[m];j++) F[i-j]=(F[i-j]+(ll)F[i]*R[m][j])%MOD;
			F[i]=0; 
		}
}
inline void qpow(int* F,int p)
{
	ans[0]=1;
	for (int i=1;i<=len[m];i++) ans[i]=0;
	while (p)
	{
		if (p&1) mul(ans,F);
		mul(F,F),p>>=1;
	}
	for (int i=0;i<=len[m];i++) F[i]=ans[i];
}
inline int calc(int n)
{
	for (int i=0;i<=len[m];i++) cur[i]=0;
	cur[1]=1;
	qpow(cur,n);
	int res=0;
	for (int i=1;i<=len[m];i++) res=(res+(ll)S[m][i]*ans[i])%MOD;
	return res;
}
inline int phi(int x)
{
	int ans=1;
	for (int i=2;i*i<=x;i++)
		if (x%i==0)
		{
			ans*=i-1,x/=i;
			while (x%i==0) ans*=i,x/=i;
		}
	if (x>1) ans*=x-1;
	return ans;
}
int main()
{
	int n;
	cin>>n>>m;
	int ans=0;
	for (int i=1;i*i<=n;i++)
		if (n%i==0)
		{
			ans=(ans+(ll)calc(i)*phi(n/i))%MOD;
			if (i*i<n) ans=(ans+(ll)calc(n/i)*phi(i))%MOD;
		}
	cout<<(ll)ans*qpow(n,MOD-2)%MOD;
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值