【数据结构】物流运输(最短路&DP)

题面

题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。

由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入描述

第一行是四个整数n(1 ≤ n ≤ 100)、m(1 ≤ m ≤ 20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。

接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度( > 0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。

再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 ≤ a ≤ b ≤ n)。表示编号为P的码 头从第a天到第b天无法装卸货物(含头尾)。

同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一 条从码头A到码头B的运输路线。

输出描述

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

样例

//【样例输入】
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

//【样例输出】
32

Tips

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

思路 

结合 最短路SpfaDp邻接矩阵储存图。设 t[i][j] 表示第 i 天 ~ 第 j 天从起点到终点的最短路。f[i] 储存至第 i 天的最小花费。可以得到转移方程f[i]=min{f[i],f[j]+k+t[j+1][i]*(i-j)},f[n]即最终解

AC_Code

#include <bits/stdc++.h>
#define ll long long 
#include <vector>
#include <stack>
#define db double 
#define ls p<<1 
#define rs p<<1|1
using namespace std;

struct data {
	int next, to, w;
}e[888];

int ne, head[26], n, m, k; 

inline int read() {
    char c = getchar(); 
	int x=0, f=1;
    while(c>'9'||c<'0') {
		if(c=='-')  f=-1;
		c = getchar();
	}
    while(c<='9'&&c>='0') {
		x = (x<<3)+(x<<1)+(c&15);
		c = getchar();
	}
    return x*f;
}

bool flag[168][26];  
ll t[168][168], f[168];  

void insert(int u,int v,int w){ 
    ne++;
    e[ne].to = v;  e[ne].w = w;
    e[ne].next = head[u];  head[u] = ne;
}

int spfa(int a,int b){
    bool block[21];
    int dis[21], q[500], inq[21];
    memset(block, 0, sizeof block);
    memset(dis, 127, sizeof dis);
    memset(inq,0,sizeof inq);
    
    for(int i=a;i<=b;i++)
        for(int j=1;j<=m;j++)
            if(flag[i][j]) block[j]=1;
			  
    q[0]=1; inq[1]=1; dis[1]=0;
    int t=0,w=1;    
    
    while(t<w)          
    {
        int p=head[q[t]];
        while(p)
        {
            if(!block[e[p].to]&&dis[e[p].to]>dis[q[t]]+e[p].w)
            {
                dis[e[p].to]=dis[q[t]]+e[p].w;
                if(!inq[e[p].to]){
                    q[w++]=e[p].to;
                    inq[e[p].to]=1;
                }
            }
            p=e[p].next;
        }
        inq[q[t]]=0;    t++;
    }return dis[m];
}


void dp() {
    for(int i=1; i<=n; i++){
        f[i] = (ll)t[1][i]*i;
        for(int j=0; j<i; j++)  
			f[i]=min(f[i], f[j]+k+t[j+1][i]*(i-j));
    }
}

int main()
{
    int q;
    cin >> n >> m >> k >> q;
    for(int i=1; i<=q; i++) {
        int x, y, z;
        x = read();
        y = read();
        z = read();
        insert(x,y,z);
        insert(y,x,z);
    }
    
    int d;  
	cin>>d;
    
    for(int i=1; i<=d; i++) { 
        int x, y, z;
        x = read();
        y = read();
        z = read();
        for(int j=y; j<=z; j++) 
			flag[j][x] = 1;
    }
    
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)  
			t[i][j] = spfa(i,j);
    dp();
    cout << f[n] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米莱虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值