题面
题目描述
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。
由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
输入描述
第一行是四个整数n(1 ≤ n ≤ 100)、m(1 ≤ m ≤ 20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。
接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度( > 0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。
再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 ≤ a ≤ b ≤ n)。表示编号为P的码 头从第a天到第b天无法装卸货物(含头尾)。
同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一 条从码头A到码头B的运输路线。
输出描述
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
样例
//【样例输入】
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
//【样例输出】
32
Tips
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
思路
结合 最短路Spfa 和 Dp ,邻接矩阵储存图。设 t[i][j] 表示第 i 天 ~ 第 j 天从起点到终点的最短路。f[i] 储存至第 i 天的最小花费。可以得到转移方程:f[i]=min{f[i],f[j]+k+t[j+1][i]*(i-j)},f[n]即最终解。
AC_Code
#include <bits/stdc++.h>
#define ll long long
#include <vector>
#include <stack>
#define db double
#define ls p<<1
#define rs p<<1|1
using namespace std;
struct data {
int next, to, w;
}e[888];
int ne, head[26], n, m, k;
inline int read() {
char c = getchar();
int x=0, f=1;
while(c>'9'||c<'0') {
if(c=='-') f=-1;
c = getchar();
}
while(c<='9'&&c>='0') {
x = (x<<3)+(x<<1)+(c&15);
c = getchar();
}
return x*f;
}
bool flag[168][26];
ll t[168][168], f[168];
void insert(int u,int v,int w){
ne++;
e[ne].to = v; e[ne].w = w;
e[ne].next = head[u]; head[u] = ne;
}
int spfa(int a,int b){
bool block[21];
int dis[21], q[500], inq[21];
memset(block, 0, sizeof block);
memset(dis, 127, sizeof dis);
memset(inq,0,sizeof inq);
for(int i=a;i<=b;i++)
for(int j=1;j<=m;j++)
if(flag[i][j]) block[j]=1;
q[0]=1; inq[1]=1; dis[1]=0;
int t=0,w=1;
while(t<w)
{
int p=head[q[t]];
while(p)
{
if(!block[e[p].to]&&dis[e[p].to]>dis[q[t]]+e[p].w)
{
dis[e[p].to]=dis[q[t]]+e[p].w;
if(!inq[e[p].to]){
q[w++]=e[p].to;
inq[e[p].to]=1;
}
}
p=e[p].next;
}
inq[q[t]]=0; t++;
}return dis[m];
}
void dp() {
for(int i=1; i<=n; i++){
f[i] = (ll)t[1][i]*i;
for(int j=0; j<i; j++)
f[i]=min(f[i], f[j]+k+t[j+1][i]*(i-j));
}
}
int main()
{
int q;
cin >> n >> m >> k >> q;
for(int i=1; i<=q; i++) {
int x, y, z;
x = read();
y = read();
z = read();
insert(x,y,z);
insert(y,x,z);
}
int d;
cin>>d;
for(int i=1; i<=d; i++) {
int x, y, z;
x = read();
y = read();
z = read();
for(int j=y; j<=z; j++)
flag[j][x] = 1;
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
t[i][j] = spfa(i,j);
dp();
cout << f[n] << endl;
return 0;
}