c/c++ 面试笔试知识点----牛客网(4)

本文介绍了C/C++面试中常见的知识点,包括贪心算法的概念、特点、求解过程及其与动态规划的差异。同时详细探讨了静态成员在C++中的特性,如静态数据成员的声明、初始化、访问规则,以及静态成员函数的使用限制。文章还涉及了线程同步中的互斥锁和C++中多线程的相关概念。
摘要由CSDN通过智能技术生成
76. 
*p++和*(p++)都是先取*p的值再将p自增
77. 
char *p, *q;
p = (char *)malloc(sizeof(char) * 20);
q = p;
scanf(“%s %s”, p, q);
printf(“%s %s\n”, p, q);
 
两个指针指向同样的地址,故值是一样的
78. 
本题的正确答案是“ 贪心算法求解最优解的一般过程
分析如下所示:( 复制粘贴来自: http://blog.csdn.net/winbobob/article/details/38314821 )
1.贪心法的设计思想
         贪心算法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。贪心算法对于大部分的优化问题都能产生最优解,但不能总获得整体最优解,通常可以获得近似最优解。
该算法存在问题:
1). 不能保证求得的最后解是最佳的;
2). 不能用来求最大或最小解问题;
3). 只能求满足某些约束条件的可行解的范围。
Dijkstra算法、Prim算法和Kruskal算法都属于典型的贪心算法
 
引例 [找零钱]
一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目
引例分析
为使找回的零钱的硬币数最小,不考虑找零钱的所有各种方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,只当不足大面值币种的金额才会去考虑下一种较小面值的币种。这就是在采用贪婪法。这种方法在这里之所以总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如果只有面值分别为1,5和11单位的硬币,而希望找回总额为15单位的硬币,按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解答应是3个5单位面值的硬币。
贪心法的求解过程 
           用贪心法求解问题应该考虑如下几个方面:
(1)候选集合C:为了构造问题的解决方案,有一个候选集合C作为问题的可能解,即问题的最终解均取自于候选集合C。例如,在付款问题中,各种            面值的货币构成候选集合。
(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成一个满足问题的完整解。例如,在付款问题中,已付出的货币构成解集合。
(3)解决函数solution:检查解集合S是否构成问题的完整解。例如,在付款问题中,解决函数是已付出的货币金额恰好等于应付款。
(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。例如,在付款             问题中,贪心策略就是在候选集合中选择面值最大的货币。
(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。例如,在付款问题中,可行函数是每一步选              择的货币和已付出的货币相加不超过应付款。
贪心法的一般流程
[cpp] view plain copy
Greedy(C)  //C是问题的输入集合即候选集合  
{  
    S={ };  //初始解集合为空集  
    while (not solution
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值