服务器端
apt-get
切换方法
# 修改该目录下的文件内容为源地址
# 备份
cp /etc/apt/sources.list /etc/apt/sources.list.backup
# 修改
vim /etc/apt/sources.list
# 更新使修改生效
apt-get update
常用源
# 阿里
deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
# 清华,打开下方链接,选择对应版本复制即可
https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/
docker
切换方法
# 备份
cp /etc/docker/daemon.json /etc/docker/daemon.json.backup
# 编辑docker安装目录下的daemon.json,添加镜像地址
# 中括号内的内容可自己切换
{
"registry-mirrors": ["https://registry.docker-cn.com"]
}
常用源
登录阿里云个人中心,找到容器加速服务下的镜像加速器,新用户会自动分配加速地址,复制粘贴到daemon.json中即可
重启docker使修改生效
systemctl restart docker
后端
maven
修改maven安装目录下conf/settings.xml内容,在mirrors下添加阿里源:
<mirrors>
<mirror>
<id>alimaven</id>
<name>aliyun maven</name>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
<mirrorOf>central</mirrorOf>
</mirror>
</mirrors>
前端
cnpm
直接使用npm下载依赖包等会比较慢,安装cnpm(淘宝镜像)来代替npm。
# 直接安装
npm i -g cnpm
# 指定镜像地址
npm i -g cnpm --registry=https://registry.npm.taobao.org
yarn
# 直接安装,也可以像如上那样指定镜像地址
npm i -g yarn
Python
conda
初次安装conda(anaconda、minicanda),可能会遇到了镜像源配置、env创建目录位于C盘等问题。通过修改conda配置文件,可解决此类问题:
- 在C:\Users\username\目录下,创建.condarc文件,用于配置conda。windows输入如下命令可自动生成.condarc文件
conda config --set show_channel_urls yes
- 给.condarc文件添加如下内容(去掉注释内容#):
# 初次安装,创建的env默认位于C:\Users\username\.conda\envs下,下面配置指定env目录位于D盘
envs_dirs:
- D:\DevApp\MiniConda\envs
- C:\Users\username\.conda\envs
- C:\Users\username\AppData\Local\conda\conda\envs
# 与上一步类似
pkgs_dirs:
- D:\DevApp\MiniConda\pkgs
- C:\Users\username\.conda\pkgs
- C:\Users\username\AppData\Local\conda\conda\pkgs
# 显示使用的channel url
show_channel_urls: true
# 官方镜像
channels:
- defaults
# 默认镜像,清华源,可自己修改
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
- 保存上一步文件,输入如下命令,清空索引缓存
conda clean -i
- 运行如下命令,创建项目验证
conda create -n demo_env python=3.8.3
- 完成后,将会在D:\DevApp\MiniConda\envs下,新建demo_env 环境