Stable Diffusion模型运算量分析

本文分析了Stable Diffusion模型的计算量,主要包括TextEncoder、UNet2DCondition、VAE Encoder+Decoder。UNet2DCondition是图像生成的主要部分,参数量大,卷积和矩阵计算各占约一半运算量。VAE的Encoder和Decoder以卷积为主,运算量巨大。建议通过降低输出分辨率并结合超分辨率网络提高图像质量,而非直接增大模型分辨率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备

模型的参数量和计算量参考: ThanatosShinji/onnx-tool: ONNX model's shape inference and MACs(FLOPs) counting. (github.com)这四个模型就是Stable Diffusion 1.4 最主要的4个onnx模型:

 github中的百度网盘可以下载带中间tensor shape的模型. 比如:

TextEncoder

这个模型很像BERT, 12 layers的Bert Base. 运算量6.7GMACs.

和 BertBase一样, 运算量98%都集中在MatMul上面.

 

这个token生成了1x77x768的hidden state需要送给UNetCondition.

### Stable Diffusion 模型训练教程 #### 3.1 准备工作环境 要开始Stable Diffusion模型的训练,首先需要设置适当的工作环境。这通常涉及安装必要的软件包和库文件,确保有足够的计算资源支持训练过程。对于大多数用户来说,建议使用配备有NVIDIA GPU的支持CUDA的机器来加快训练速度。 #### 3.2 数据集准备 高质量的数据集是成功的关键之一。针对特定应用场景收集或创建适合的任务导向图片集合非常重要。理想情况下,应该拥有大量标注良好的样本用于监督学习模式下的参数调整[^2]。 #### 3.3 配置超参数 在启动实际训练之前,还需要仔细配置一系列影响最终效果的重要因素——即所谓的“超参数”。这些可能包括但不限于批量大小(batch size),初始学习率(learning rate),迭代次数(epoch number)等。合理设定它们能够有效提升收敛性能并获得更好的泛化能力。 #### 3.4 使用混合精度训练优化 采用混合精度训练方法可以显著改善训练效率而不牺牲准确性。具体做法是在前向传播过程中利用较低位宽(如FP16)表示张量,在反向传播时恢复至更高精度完成梯度更新操作。这种方法不仅减少了显存占用还提高了运算速率[^4]。 ```python from torch.cuda import amp scaler = amp.GradScaler() for data, target in dataloader: optimizer.zero_grad() with amp.autocast(): output = model(data) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 3.5 应用模型并行技术 当面对非常庞大的网络结构时,可以通过划分不同层间的任务分配给多台设备共同处理的方式来减轻单一GPU的压力。此策略特别适用于那些具有复杂架构设计的大规模预训练模型迁移场景下。 #### 3.6 实施梯度累积技巧 有时候由于硬件条件限制无法一次性加载较大的batch尺寸参与一轮完整的正负反馈循环;此时可考虑引入梯度累加机制作为替代方案。它允许程序先累计若干个小批次上的变化趋势后再统一执行一次权重修正动作,从而间接实现了大batch的效果而无需额外投资昂贵设备升级成本。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值