AOS加性算子分裂法

AOS加性算子分裂法

加性算子分裂法顾名思义,就是在不同维度上分开讨论,最后相加。需要不同维度上正交。

图像分割能量函数经过梯度下降法得到的的迭代公式一般为:
∂ ϕ ∂ t = μ δ ϵ ( ϕ ) ∇ . ( ∇ ϕ ∣ ∇ ϕ ∣ ) + v ∇ ( ∇ ϕ ( 1 − 1 ∣ ∇ ϕ ∣ ) ) + F ( x , y ) \frac{\partial \phi}{\partial t}=\mu \delta_{\epsilon}(\phi) \nabla.(\frac{\nabla \phi}{|\nabla \phi|})+v\nabla(\nabla \phi (1-\frac{1}{|\nabla \phi|}))+F(x,y) tϕ=μδϵ(ϕ).(ϕϕ)+v(ϕ(1ϕ1))+F(x,y)

E = 1 ∣ ∇ ϕ ∣ , F = 1 − 1 ∣ ∇ ϕ ∣ E=\frac{1}{|\nabla \phi|},F=1-\frac{1}{|\nabla \phi|} E=ϕ1,F=1ϕ1显然E和F都是一个二维矩阵。

在讨论二维之前,我想先讨论一维的情况。
要想知道一维半隐式方程的解法,需要先知道Thomas算法。分享一篇文章(10分钟理解托马斯算法)
https://blog.csdn.net/qq_35025383/article/details/80821884
对于一维的AOS算法 ϕ n + 1 − ϕ n Δ t = A ( ϕ n ) ϕ n + 1 + F ( x ) \frac{\phi^{n+1}-\phi^{n}}{\Delta t}=A(\phi^n)\phi^{n+1}+F(x) Δtϕn+1ϕn=A(ϕn)ϕn+1+F(x)

( I − τ A ( ϕ n ) ) ϕ n + 1 = ϕ ^ n (I-\tau A(\phi^{n}))\phi^{n+1}=\widehat{\phi}^{n} (IτA(ϕn))ϕn+1=ϕ n其中
τ = Δ t \tau=\Delta t τ=Δt, ϕ ^ n = ϕ n + F ( x ) \widehat{\phi}^{n}=\phi^{n}+F(x) ϕ n=ϕn+F(x)
A是通过中心差分法获得。 ( A ( ϕ n ) ϕ n + 1 ) i = μ δ ϵ ( ϕ ) ( ∂ x ( E ϕ x n + 1 ) ) + v ( ∂ x ( F ϕ x n + 1 ) ) = μ δ ϵ ( ϕ ) E i + 1 2 n ( ϕ x n + 1 ) i + 1 2 − E i − 1 2 n ( ϕ x n + 1 ) i − 1 2 h x + v F i + 1 2 n ( ϕ x n + 1 ) i + 1 2 − F i − 1 2 n ( ϕ x n + 1 ) i − 1 2 h x = μ δ ϵ ( ϕ ) E i + 1 n + E i n 2 ( ϕ i + 1 n + 1 − ϕ i n + 1 h x ) − E i n + E i − 1 n 2 ( ϕ i n + 1 − ϕ i − 1 n + 1 h x ) h x + v F i + 1 n + F i n 2 ( ϕ i + 1 n + 1 − ϕ i n + 1 h x ) − F i n + F i − 1 n 2 ( ϕ i n + 1 − ϕ i − 1 n + 1 h x ) h x = μ δ ϵ ( ϕ ) ( E i + 1 n + E i n ) ( ϕ i + 1 n + 1 − ϕ i n + 1 ) − ( E i n + E i − 1 n ) ( ϕ i n + 1 − ϕ i − 1 n + 1 ) 2 h x 2 + v ( F i + 1 n + F i n ) ( ϕ i + 1 n + 1 − ϕ i n + 1 ) − ( F i n + F i − 1 n ) ( ϕ i n + 1 − ϕ i − 1 n + 1 ) 2 h x 2 (A(\phi^{n})\phi^{n+1})_i=\mu\delta_{\epsilon}(\phi)(\partial_x(E\phi_{x}^{n+1}))+v(\partial_x(F\phi_{x}^{n+1})) \\ =\mu\delta_{\epsilon}(\phi)\frac{E_{\frac{i+1}{2}}^{n}(\phi_{x}^{n+1})_{\frac{i+1}{2}}-E_{\frac{i-1}{2}}^{n}(\phi_{x}^{n+1})_{\frac{i-1}{2}}}{h_x}+v\frac{F_{\frac{i+1}{2}}^{n}(\phi_{x}^{n+1})_{\frac{i+1}{2}}-F_{\frac{i-1}{2}}^{n}(\phi_{x}^{n+1})_{\frac{i-1}{2}}}{h_x} \\ = \mu\delta_{\epsilon}(\phi) \frac{\frac{E_{i+1}^{n}+E_{i}^{n}}{2}(\frac{\phi_{i+1}^{n+1}-\phi_{i}^{n+1}}{h_x})-\frac{E_{i}^{n}+E_{i-1}^{n}}{2}(\frac{\phi_{i}^{n+1}-\phi_{i-1}^{n+1}}{h_x})}{h_x} +v\frac{\frac{F_{i+1}^{n}+F_{i}^{n}}{2}(\frac{\phi_{i+1}^{n+1}-\phi_{i}^{n+1}}{h_x})-\frac{F_{i}^{n}+F_{i-1}^{n}}{2}(\frac{\phi_{i}^{n+1}-\phi_{i-1}^{n+1}}{h_x})}{h_x} \\ = \mu\delta_{\epsilon}(\phi) \frac{(E_{i+1}^{n}+E_{i}^{n})(\phi_{i+1}^{n+1}-\phi_{i}^{n+1})-(E_{i}^{n}+E_{i-1}^{n})(\phi_{i}^{n+1}-\phi_{i-1}^{n+1})}{2h_{x}^2} +v\frac{(F_{i+1}^{n}+F_{i}^{n})(\phi_{i+1}^{n+1}-\phi_{i}^{n+1})-(F_{i}^{n}+F_{i-1}^{n})(\phi_{i}^{n+1}-\phi_{i-1}^{n+1})}{2h_{x}^2} (A(ϕn)ϕn+1)i=μδϵ(ϕ)(x(Eϕxn+1))+v(x(Fϕxn+1))=μδϵ(ϕ)hxE2i+1n(ϕxn+1)2i+1E2i1n(ϕxn+1)2i1+vhxF2i+1n(ϕxn+1)2i+1F2i1n(ϕxn+1)2i1=μδϵ(ϕ)hx2Ei+1n+Ein(hxϕi+1n+1ϕin+1)2Ein+Ei1n(hxϕin+1ϕi1n+1)+vhx2Fi+1n+Fin(hxϕi+1n+1ϕin+1)2Fin+Fi1n(hxϕin+1ϕi1n+1)=μδϵ(ϕ)2hx2(Ei+1n+Ein)(ϕi+1n+1ϕin+1)(Ein+Ei1n)(ϕin+

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值