【小波分析】三、正交小波的构造

【小波分析】三、正交小波的构造

内容回顾

回顾一下之前的内容。前面我们从线性代数谈起,引入了"变换即找基"的观念。接着我们谈了一下小波分析的历史,从傅里叶得到法国科学院的大奖却没拿到奖金一脸委屈到哈尔基,再到加窗傅里叶变换,再到小波分析的萌芽。

再之后,我们就开始正式地介绍小波分析了。我们从傅里叶变换谈起,介绍了它种种的缺点,和不尽如人意的地方。傅里叶分析不足的根源在于傅里叶分析的基函数是周期函数,而周期函数的离散和还是周期函数,那么,信号空间里面的任意一个函数,就不能直接做傅里叶变换。从而我们引入了小波。

我们简单介绍了什么是小波基。它是满足一定条件的一个函数,通过连续的伸缩和平移得到一堆函数。再之后,我们通过不断地加条件,把频域空间不端地缩小,从而得到各种各样的小波。正负无穷折叠,得到吸收小波。把 a a a 在 2 的整数次幂的地方做离散,我们得到了二进小波,把 a a a在 2 的整数次幂的地方做离散,把 b b b 在 2 的整数次幂的整数倍的地方做离散,我们得到了正交小波。正交小波是非常重要的一类小波。

最后我们还介绍了,小波和采样的相关内容。后续还有很多丰富的内容,如用时频分析证明测不准原理等。

其实我很小的时候就听说过小波了,大概在四五岁的时候。丁丁、迪西、拉拉、小波,天线宝宝,说,你好。那时候,除了知道小波,还有丁丁、迪西和拉拉。

傅里叶变换常用性质

介绍一下后续内容需要用到的傅里叶变换的性质。简单推导即可得到。这里不做详细介绍。

回顾傅里叶变换的定义:
f ^ ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t \hat{f}(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t f^(ω)=+f(t)eiωtdt

傅里叶逆变换为:
f ^ ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( t ) e i ω t d t \hat{f}(\omega)=\frac{1}{{2 \pi}} \int_{-\infty}^{+\infty} f(t) e^{i \omega t} d t f^(ω)=2π1+f(t)eiωtdt

正逆变换前面的系数并不重要,反正乘起来要等于 1 2 π \frac{1}{2\pi} 2π1

1、 f ( t + h ) f(t+h) f(t+h)的傅里叶变换为 e i ω h f ^ ( ω ) e^{i\omega h}\hat f(\omega) eiωhf^(ω)

2、 f ( a t ) f(at) f(at)的傅里叶变换为 1 a f ^ ( ω a ) \frac{1}{a}\hat f(\frac{\omega}{a}) a1f^(aω)

3、 d f ( t ) d t \frac{d f(t)}{d t} dtdf(t)的傅里叶变换为 i ω f ^ ( ω ) i \omega \hat f(\omega) iωf^(ω)

4、 − i t f ( t ) -itf(t) itf(t)的傅里叶变换为 d f ^ ( ω ) d ω \frac{d \hat f(\omega)}{d \omega} dωdf^(ω)

5、互反公式: ∫ − ∞ + ∞ f ( t ) g ^ ( t ) d t = ∫ − ∞ + ∞ f ^ ( ω ) g ( ω ) d ω \int_{-\infty}^{+\infty}f(t)\hat g(t)dt=\int_{-\infty}^{+\infty}\hat f(\omega)g(\omega)d\omega +f(t)g^(t)dt=+f^(ω)g(ω)dω

6、特征函数傅里叶变换: χ [ − a , a ] \chi[-a,a] χ[a,a]的傅里叶变换是辛格函数 2 sin ⁡ a ω a ω 2\frac{\sin a \omega}{a\omega} 2aωsinaω。反之, sin ⁡ a t a t \frac{\sin a t}{at} atsinat的傅里叶变换是 χ [ − a , a ] \chi[-a,a] χ[a,a]。我这个不知道有没有算错,可以再确认一下。

处理 f ( a t + h ) f(at+h) f(at+h) 类型的傅里叶变换,先把其写成 f ( a ( t + h a ) ) f(a(t+\frac{h}{a})) f(a(t+ah)),再分别按第 2 条和第 1 条的方式处理。即 f ( a t + h ) f(at+h) f(at+h) 的傅里叶变换是 1 a e i ω h a f ^ ( ω a ) \frac{1}{a}e^{i\omega \frac{h}{a}}\hat f(\frac{\omega}{a}) a1eiωahf^(aω)

正交小波典例: 哈尔小波

回顾一下正交小波的定义。

ψ ( t ) \psi(t) ψ(t) 满足
{ ψ j , k ( t ) = 2 j / 2 ψ ( 2 j t − k ) ; ( j , k ) ∈ Z 2 } \left\{\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right) ;(j, k) \in Z^{2}\right\} {ψj,k(t)=2j/2ψ(2jtk);(j,k)Z2}
构成 L 2 ( R ) L^{2}(\mathbb{R}) L2(R) 的标准正交基 (O.N.B), 则称 ψ ( t ) \psi(t) ψ(t) 是正交小波。

注意到,当 j = 0 , k = 0 j=0,k =0 j=0,k=0 刚好是 ψ ( t ) \psi(t) ψ(t),它也在这个空间里面。别的基是通过它的 2 2 2 的整数次幂的伸缩和平移得到的。

看哈尔小波,它是不是正交小波呢?
h ( t ) = { 1 0 <  t < 0.5 − 1 0.5 ≤ t < 1 0 其 他 h(t)=\left\{\begin{array}{cc} 1 & 0<\text { t}<0.5 \\ -1 & 0.5\leq t <1 \\ 0 & 其他 \end{array}\right. h(t)=1100< t<0.50.5t<1
h j , k ( t ) = 2 j 2 h ( 2 j t − k ) h_{j, k}(t)=2^{\frac{j}{2}} h\left(2^{j} t-k\right) hj,k(t)=22jh(2jtk)

容易验证,
⟨ h j , k ( t ) , h j 1 , k 1 ( t ) ⟩ = δ ( j − j 1 ) δ ( k − k 1 ) \left\langle h_{j,k}{(t)}, h_{j_1, k_{1}}(t)\right\rangle=\delta(j-j_1) \delta \left(k-k_{1}\right) hj,k(t),hj1,k1(t)=δ(jj1)δ(kk1)
它构成了一个 O.N.S. (标准正交系)。要证明它是标准正交基,还需要证明信号空间的任意一个函数都能写成他们的线性组合,这个有兴趣进行验证,这个是有办法的。

香农小波

以上的正交小波的构造直接就写出来,没有任何过程。下面我们看看别的正交小波。

shannon 采样地理

我们回顾一下香农(shannon)采样定理。

∀ f ( t ) ∈ L 2 ( R ) \forall f(t) \in L^{2}(R) f(t)L2(R)
若,
f ^ ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t = 0 , ∣ ω ∣ > B \hat f(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t=0, \quad|\omega|>B f^(ω)=+f(t)eiωtdt=0,ω>B
则,
f ( t ) = ∑ n ∈ Z f ( n Δ ) sin ⁡ π Δ ( t − n Δ ) π Δ ( t − n Δ ) f(t)= \sum_{n \in \mathbb{Z}} f(n \Delta)\frac{\sin \frac{\pi}{\Delta}(t-n \Delta)}{\frac{\pi}{\Delta}(t-n \Delta)} f(t)=nZf(nΔ)Δπ(tnΔ)sinΔπ(tnΔ)
其中, 0 < Δ ⩽ π B 0<\Delta \leqslant \frac{\pi}{B} 0<ΔBπ

香农采样定理也叫香农插值公式。它说的是什么样一件事情呢?他说的是,若一个信号,他变到频域里面去,具有截断频率 B B B,那么这个信号就可以通过等间距的离散采样重建出来。这个采样间隔最多可以达到 π B \frac{\pi}{B} Bπ,截断频率越小,采样间隔就可以越大一些。

一言以蔽之,带限信号,总可以用它的等间隔信号重建,只要采样间隔不是太大。

考虑 B 为 PI

我们首先考虑香农采样定理中 B = π B=\pi B=π 的部分。
f ( t ) = ∑ n ∈ Z f ( n ) sin ⁡ π ( t − n ) π ( t − n ) = ∑ = − ∞ + ∞ f ( n ) ϕ ( t − n ) f(t)= \sum_{n \in \mathbb{Z}} f(n )\frac{\sin {\pi}{}(t-n )}{{\pi}(t-n)} = \sum_{=-\infty}^{+\infty} f(n) \phi(t-n) f(t)=nZf(n)π(tn)sinπ(tn)==+f(n)ϕ(tn)
其中,令
ϕ ( t ) = sin ⁡ π t π t \phi(t)=\frac{\sin \pi t}{\pi t} ϕ(t)=πtsinπt

那么, ϕ ( t − n ) \phi(t-n) ϕ(tn) 是不是构成标准正交系? B = π B=\pi B=π 的时候,得到的 ϕ ( t − n ) \phi(t-n) ϕ(tn) 是否构成一个基?验证一下。
容易看到,
⟨ ϕ ( t − n ) , ϕ ( t − m ) ⟩ = δ ( n − m ) \langle\phi(t-n), \phi(t-m)\rangle=\delta(n-m) ϕ(tn),ϕ(tm)=δ(nm)
事实上,
⟨ ϕ ( t − n ) , ϕ ( t − m ) ⟩ = ∫ − ∞ + ∞ ϕ ( t − n ) ϕ ˉ ( t − m ) d t = 1 2 π ∫ − ∞ + ∞ [ ϕ ^ ( ω ) e − i n ω ] [ ϕ ^ ( ω ) e − i m ω ] ‾ d ω = 1 2 π ∫ − ∞ + ∞ ∣ ϕ ^ ( ω ) ∣ 2 e − i ( n − m ) ω d ω = 1 2 π ∫ − π π e − i ( n − m ) ω d ω \begin{array}{l} \langle\phi(t-n), \phi(t-m)\rangle =\int_{-\infty}^{+\infty} \phi(t-n) \bar{\phi}(t-m) d t\\ =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[\hat \phi(\omega) e^{-i n\omega}\right] \overline{\left[\hat{\phi}(\omega) e^{-i m \omega}\right]} d \omega\\ =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|\hat \phi(\omega)|^{2} e^{-i(n-m) \omega} d{\omega}\\ = \frac{1}{2\pi} \int_{-\pi}^{\pi}e^{-i(n-m) \omega} d{\omega} \end{array} ϕ(tn),ϕ(tm)=+ϕ(tn)ϕˉ(tm)dt=2π1+[ϕ^(ω)einω][ϕ^(ω)eimω]dω=2π1+ϕ^(ω)2ei(nm)ωdω=2π1ππei(nm)ωdω

辛格函数在频域是一个矩形函数,它的傅里叶变换是一个特征函数。最后这个前面的系数我不知道有没有算错,回去可以再 check 一下,并不重要在这里。

由此,我们可以看到,当 B = π B=\pi B=π 的时候,我们得到了一组函数,这组函数是某个辛格函数的整数平移,并且他们是正交的。进一步,如果我们定义截断频率为 π \pi π 的空间,

V 0 = { f ( t ) ; f ^ ( ω ) = 0 , ∣ ω ∣ > π } V_0 = \{f(t) ;\hat f(\omega)=0, |\omega |>\pi\} V0={f(t);f^(ω)=0,ω>π}

由上面那个 f ( t ) f(t) f(t) 的表达,我们就知道 ϕ ( t − n ) \phi(t-n) ϕ(tn)构成了 V 0 V_0 V0 标准正交基。

{ ϕ ( t − n ) ; n ∈ Z } 构 成 V 0 的 O.N.B  \{\phi(t-n) ; n \in \mathbb{Z}\} { 构成 } V_{0} \text {的 O.N.B } {ϕ(tn);nZ}V0 O.N.B 

思考:如果不用香农采样定理,有别的方法可以证明 ϕ ( t − n ) \phi(t-n) ϕ(tn) V 0 V_0 V0的一组标准正交基吗?

考虑 B 为 PI 的 2 的整数次幂倍

如上所述,我们就得到了截断频率为 π \pi π 的函数空间的一组标准正交基。但是呢,我们的信号空间不是 V 0 V_0 V0,这个和正交小波还是有点差距的。怎么办?我们接下来考虑 B = 2 j π B = 2^j \pi B=2jπ

首先,我们定义截断频率为 2 j π 2^j \pi 2jπ 的空间,
V j = { f ( t ) ; f ^ ( ω ) = 0 , ∣ ω ∣ > 2 j π } V_{j}=\left\{f(t) ; \quad \hat f\left(\omega\right)=0, \quad|\omega|>2 ^j\pi\right\} Vj={f(t);f^(ω)=0,ω>2jπ}
这个定义和原来的 V 0 V_0 V0 的定义是相容的。它是原空间的线性子空间。

我们再走一遍上面的过程。取采样间隔 Δ = 2 − j \Delta=2^{-j} Δ=2j,那么
f ( t ) = ∑ n = − ∞ + ∞ f ( 2 − j n ) ⋅ sin ⁡ π ( 2 j t − n ) π ( 2 j t − n ) = ∑ n = − ∞ + ∞ 2 − j / 2 f ( 2 − j n ) ⋅ 2 j 2 ϕ ( 2 j t − n ) = ∑ n = − ∞ + ∞ 2 − j / 2 f ( 2 − j n ) ϕ j , n ( t ) \begin{array}{l} f(t)=\sum_{n=-\infty}^{+\infty} f\left(2^{-j} n\right) \cdot \frac{\sin \pi(2^j t-n)}{\pi\left(2^{j} t-n\right)}\\ =\sum_{n=-\infty}^{+\infty} 2^{-j/2} f\left(2^{-j} n\right) \cdot 2^{\frac{j}{2}} \phi(2^j t-n) \\= \sum_{n=-\infty}^{+\infty} 2^{-j/2} f\left(2^{-j} n\right) \phi_{j,n} {(t)} \end{array} f(t)=n=+f(2jn)π(2jtn)sinπ(2jtn)=n=+2j/2f(2jn)22jϕ(2jtn)=n=+2j/2f(2jn)ϕj,n(t)
其中,
ϕ ( 2 j t − n ) = sin ⁡ π ( 2 j t − n ) π ( 2 j t − n ) \phi(2^j t-n)=\frac{\sin \pi\left(2^{j} t-n\right)}{\pi(2^j t-n)} ϕ(2jtn)=π(2jtn)sinπ(2jtn)
欸,看基函数,
2 j / 2 ϕ ( 2 j t − n ) 2^{j / 2} \phi(2^j t-n) 2j/2ϕ(2jtn)

看着有正交小波的那个意思了,但是总觉得差点什么东西。我们接着往下考虑。

因为截断频率 2 j π 2^j \pi 2jπ 迅速地到无穷,我们有理由相信, V i V_i Vi 是嵌套在 V i + 1 V_{i+1} Vi+1 里面的,并且快速到地趋近于原来的信号空间 L ( R ) L(\mathbb{R}) L(R)

固定一个 j j j,考虑 { ϕ j , n ( t ) ; n ∈ Z } \{\phi_{j,n}(t) ; n \in \mathbb{Z}\} {ϕj,n(t);nZ},它构成了一组标准正交系,即
⟨ ϕ j , n ( t ) , ϕ j , m ( t ) ⟩ = δ ( n − m ) \left\langle\phi_{j, n}(t), \phi_{j, m}(t)\right\rangle=\delta\left(n-m\right) ϕj,n(t),ϕj,m(t)=δ(nm)

事实上,
⟨ ϕ j , n ( t ) , ϕ j , m ( t ) ⟩ = ∫ − ∞ + ∞ ϕ j , n ( t ) ϕ ˉ j , m ( t ) d t = 1 2 π ∗ 2 j ∫ − ∞ + ∞ ∣ ϕ ^ ( 2 − j ω ) ∣ 2 e − i ( n − m ) ω d ω = 1 2 π ∗ 2 j ∫ − 2 j π 2 j π e − i ( n − m ) ω d ω = δ ( n − m ) \begin{array}{l} \langle\phi_{j,n}(t), \phi_{j,m}(t)\rangle =\int_{-\infty}^{+\infty} \phi_{j,n}(t) \bar \phi_{j,m}(t)d t\\ =\frac{1}{2 \pi*2^j} \int_{-\infty}^{+\infty}|\hat \phi(2^{-j}\omega)|^{2} e^{-i(n-m) \omega} d{\omega}\\ = \frac{1}{2\pi*2^j} \int_{-2^j\pi}^{2^j\pi}e^{-i(n-m) \omega} d{\omega}\\ =\delta\left(n-m\right) \end{array} ϕj,n(t),ϕj,m(t)=+ϕj,n(t)ϕˉj,m(t)dt=2π2j1+ϕ^(2jω)2ei(nm)ωdω=2π2j12jπ2jπei(nm)ωdω=δ(nm)

这里我写的指标可能有点问题,回头再 check 一下。

由此可见, ϕ j , n \phi_{j,n} ϕj,n 构成 V j V_j Vj的一组标准正交基。换言之, V j V_j Vj 刚好是 ϕ j , n \phi_{j,n} ϕj,n张成的线性子空间。

逼近关系

下面我们来考虑 V j V_j Vj 是否趋近于 V V V 的说明,趋近的含义包含,空间是不是原来越近,基函数是不是越来越靠近。 V j V_j Vj 的逼近和 L 2 L^2 L2 里面的标准正交基,是不是一致的,我们去分析这种一致性,这就是整个多分辨分析产生的最最关键的一环。

先做几点补充说明:

(1) 嵌套关系:对任何整数 j j j
V j ⊂ V j + 1 V_{j} \subset V_{j+1} VjVj+1
因为,对任何信号来说,如果它是 2 j π 2^{j} \pi 2jπ 频率截断时,那必定是 2 j + 1 π 2^{j+1} \pi 2j+1π 频率截断的。

这一点是比较容易接受的,因为 2 j + 1 π 2^{j+1} \pi 2j+1π 之外的地方为 0,那么 2 j π 2^{j} \pi 2jπ 之外肯定也是为 0.

(2) 唯一关系:这些子空间中“最小的”是零空间,即,
⋂ j ∈ Z V j = { 0 } \bigcap_{j \in Z} V_{j}=\{0\} jZVj={0}
这说明具有任意频率截断的信号只能是零信号。

j j j 趋于负无穷的时候,谱逐渐趋于 0,那么信号 f ( t ) f(t) f(t) 也趋于 0。

只看:如果 f ^ ( 0 ) ≠ 0 \hat f(0) \neq 0 f^(0)=0,那么
∫ − ∞ ∞ f ( t ) d t ≠ 0 ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t = ∞ \begin{array}{c} \int_{-\infty}^{\infty} f(t) d t \neq 0 \\ \int_{-\infty}^{+\infty}|f(t)|^{2} d t=\infty \end{array} f(t)dt=0+f(t)2dt=
3) 稠密关系: 这些子空间能很好地“逼近”空间 L 2 ( R ) L^{2}(R) L2(R)
( ⋃ j ∈ Z V j ) ‾ = L 2 ( R ) \overline{\left(\bigcup_{j \in Z} V_{j}\right)}=L^{2}(R) jZVj=L2(R)
利用时域和频域的等价性以及 L 2 ( R ) L^{2}(R) L2(R) 中的任何信号的谱都可以用它的有限截断进行有效逼近的事实可以说明这个等式。

2 j π 2^j \pi 2jπ 迅速地趋向于无穷,而在这个之外的值都等于 0,那么以为着截断限制的影响越来越小,直至消失。从感情上来说,我们很容易接受这一点。从数学上来说,我们也很容易用 ϵ , δ \epsilon, \delta ϵ,δ 语言说清楚。补充说明如下:

对于任意的信号空间的函数 f f f,定义
d j = inf ⁡ v j ∈ V j ∥ f − v j ∥ d_j = \inf_{v_j \in V_j}\|f-v_j\| dj=vjVjinffvj

要说明 d j → 0 d_j \rightarrow 0 dj0,根据 Paserval 关系,只要证在频域中
inf ⁡ v j ∈ V j ∥ f ^ − v ^ j ∥ → 0 \inf_{v_j \in V_j}\|\hat f-\hat v_j\|\rightarrow 0 vjVjinff^v^j0

这由 f ^ ∈ L 2 ( R ) \hat f\in L^2(R) f^L2(R)(因为 f ∈ L 2 ( R ) f\in L^2(R) fL2(R) 和 Parserval 关系)可以直接得到,这时一个充要条件。

从这里,我们得到一个科学研究的启示,有时候,你觉得是那样,这是非常重要的。我们只要在思路上不离开的主线地去做你自己东西就可以了。很多时候,你感觉是对的,那么基本就是对的,如果非要把每个细节都做明白了,再做下一步,这个可能就做不出什么重大的成果了。

(4) 伸缩关系:相邻子空间按时间伸缩重合
f ( t ) ∈ V j ⇔ f ( 2 t ) ∈ V j + 1 f(t) \in V_{j} \Leftrightarrow f(2 t) \in V_{j+1} f(t)Vjf(2t)Vj+1
利用信号的时间伸缩在傅里叶变换下的特点容易验证这个关系。 这说明,虽然相邻的两个子空间之间有(1)的包含关系,但它们的信号的自变量即时间之间却具有二倍的伸缩关系。

这个东西怎么理解呢?

我们用 V 0 V_0 V0 V 1 V_1 V1 来举例。为了方便,我们直接考虑 n = 0 n=0 n=0,即没有平移的那个函数。

v 0 = ϕ ( t ) v_0 = \phi(t) v0=ϕ(t)

v 1 = 2 1 / 2 ϕ ( 2 t ) v_1 = 2^{1 / 2} \phi(2 t) v1=21/2ϕ(2t)

可以一言就看出, v 0 v_0 v0 t t t 拉长一倍,再做个单位化,就得到了 v 1 v_1 v1。从这个角度来看,把 V 0 V_0 V0 空间,时间拉长一倍就变成了 V 1 V_1 V1,而 V 1 V_1 V1 空间又包含了 V 0 V_0 V0 空间。

那么再看正交小波,有这种类似的性质吗?首先,嵌套关系是没有的。因为基是正交的。其实,它对于 L 2 ( R ) L^2(R) L2(R) 的逼近,是一种补充式的逼近。再者,正交小波的相邻空间,也是可以通过压缩时间得到的。这都是后话,我们后面再来说。

到这,我们已经讲清楚了, V j V_j Vj 之间以及和 L ( R ) L(R) L(R) 之间的关系。下面,我们再来看一看, V j V_j Vj 的基是怎么变,是不是能趋向于某个正交小波。

考虑,
lim ⁡ j → + ∞ 2 j 2 sin ⁡ π ( 2 j t − n ) π ( 2 j t − n ) \lim _{j \rightarrow+\infty} 2^{\frac{j}{2}} \frac{\sin \pi(2^j t-n)}{\pi(2^j t-n)} j+lim22jπ(2jtn)sinπ(2jtn)
容易看得出来,当 t = 0 t=0 t=0 的时候,这个值等于无穷。当 t ≠ 0 t\neq 0 t=0的时候,这个值实际上是趋向于 0 的。这个东西我们并不陌生,它是一个类 δ \delta δ 函数一样的东西。在一个点除为无穷,在别的点处等于 0。 它怎么就是 L ( R ) L(R) L(R)空间的一组基呢?这就类似于线性代数中的平凡基。实际上,工程上有这样一个公式,

f ( t ) = ∫ − ∞ + ∞ f ( u ) ∗ δ ( u − t ) d u f(t)=\int_{-\infty}^{+\infty} f(u) * \delta(u-t) d u f(t)=+f(u)δ(ut)du

你是一个模拟信号,我用一个时间滞后的模拟信号,给他一卷积,我就得到了原来信号的表达。某种意义下来说,就体现了 δ \delta δ函数这种基的功能。这个东西在工程上,可以用来恢复信号。问题的关键在于,我们再搞脉冲信号的时候,是不可能做到刚好在一个点处有值,别的地方等于 0 的。脉冲点带宽不等于 0 制约了这个方法的精度。在现有的条件下,你能把带宽压得越小,说明测量水平越高。

再议正交小波

通过令 j j j 趋向于无穷,最后得到的竟然得到的是 δ \delta δ 函数,以及它的平移构成的一簇基,这和我们想要的正交小波相去深远,怎么搞,迷茫了是吧。老师常常告诉我们,做研究,迷茫了,怎么办,回到出发点来做,以退为进,方是正道。

我们再回到原来的角度,来看一看,正交小波。首先,我们仿造 V j V_j Vj, 定义,

W j = closespan { ψ i j ( t ) = 2 j 2 ψ ( 2 j t − k ) , k ∈ Z } W_j = \text{closespan}\left\{\psi_{i j}(t)=2^{\frac{j}{2}} \psi(2^j t-k), k \in Z\right\} Wj=closespan{ψij(t)=22jψ(2jtk),kZ}

span 我们常用,这里的 close,表示的是如果这里面有一些类的函数收敛到某个函数,这个函数一定在这里面,是个闭的。这表示的是,我们固定一个 j j j,在这个 j j j 下进行平移,生成的一系列函数。仿造 V j V_j Vj ,我们来看一下 W j W_j Wj 之间的关系。

A、空间正交性:
W j ⊥ W j + 1 W_{j} \perp W_{j+1} WjWj+1
这个显然,对吧,因为小波是相互正交的,不管怎么分割,空间与空间之间肯定是正交的。

B、对于信号空间的逼近性:
L 2 ( R ) = ⨁ j = − ∞ + ∞ W j L^{2}(R)=\bigoplus_{j=-\infty}^{+\infty} W_{j} L2(R)=j=+Wj
这个也不需要过多地解释,因为正交小波构成了信号空间的一组标准正交基,而 W j W_{j} Wj W j + 1 W_{j+1} Wj+1相互正交,那么,对于 L 2 L^2 L2 空间的逼近,必然是以直和的形式呈现的。

C、相邻空间的 2 倍转移关系:
g ( t ) ∈ W j ⇔ g ( 2 t ) ∈ W j + 1 g(t) \in W_{j} \Leftrightarrow g\left(2{t}\right) \in W_{j+1} g(t)Wjg(2t)Wj+1
这个也是容易理解的,依然看前两个,
W 0 : { ψ ( t − k ) , k ∈ Z } W_{0}:\{\psi(t-k), k \in Z\} W0:{ψ(tk),kZ}
W 1 : { 2 ψ ( 2 t − k ) , k ∈ Z } W_{1}:\{\sqrt{2} \psi(2 t-k), k \in Z \} W1:{2 ψ(2tk),kZ}
显然, W 0 W_0 W0 时间上压缩一倍就到了 W 1 W_1 W1 W 1 W_1 W1 时间上伸展一倍,就到了 W 0 W_0 W0,他们是 相互制约,相互唯一确定。由此,只要有了任意一个 W j W_j Wj,就可以通过拉伸压缩,得到全部的。

我们来理解一下,上面这三条告诉了我们什么东西。 W j W_j Wj V j V_j Vj不同,它每一次产生的和前面都不同,递推过程中,我们用所有已有的 W j W_j Wj的直和来逼近信号空间。这就像贴瓷砖,每一次都贴一块新的,而不把原来久的去掉。贴的这块新的,也可以在原来的一块的基础上,在时间上进行伸缩得到。

容易知道,只要 W j W_j Wj之间满足上述 关系,再给出 W 0 W_0 W0的一组基,那么正交小波就有了其实。

基的转移

下面我们再来看一下 V 0 → V 1 V_0 \rightarrow V_1 V0V1 转移,就是说, V 0 V_0 V0 中的一组基,通过在时间尺度上压缩一倍,是不是刚好变成了 V 1 V_1 V1 中基的一部分。

我们来看基, V 0 V_0 V0 V 1 V_1 V1中的基分别写为:

A = { ϕ ( t − n ) , n ∈ Z } A = \{\phi(t-n) ,n \in Z\} A={ϕ(tn),nZ}
B = { 2 ϕ ( 2 t − m ) , m ∈ Z } B = \{\sqrt{2} \phi(2 t-m),m \in Z\} B={2 ϕ(2tm),mZ}

A A A 集合有没有可能取到一个合适的 n n n,使它落到 B B B 里面,显然,这是不可能的。所以,虽然 A A A 空间是包含在 B B B 空间里面的,但是基之间不是简单的扩充关系,两个空间的基是没有任何的重叠。也就是说, A A A 里面没有任何一个基落到 B B B 里面来。

我们现在来想,如果把 A A A 中的一组基,扩充成 B B B 的一组基。这个画个图其实很容易理解,在 A A A 空间中,随意地找一个向量,在 B B B 空间中做投影,把 A A A 向量减去它在 B B B 空间上的投影,得到的,其实就是 A A A 对于 B B B 的正交补。

在线性代数上,我们用直和分解来表示,

V 1 = V 0 ⊕ W 0 V_{1}=V_{0} \oplus W_{0} V1=V0W0

我们这里仍然用 W 0 W_0 W0来表示正交补,我们待会儿会说明,这个 W 0 W_0 W0恰好就是正交小波的那个 W 0 W_0 W0。仔细地去想一想,品味品味这个东西。“正交基” 这一点是不言而喻的,对吧,只要看这个基的形式是不是刚好满足正交小波的要求,即要长成伸缩加平移的那个风格。

V 0 V_0 V0的谱支撑在 [ − π , π ] [-\pi,\pi] [π,π] V 1 V_1 V1的谱支撑在 [ − 2 π , 2 π ] [-2\pi,2\pi] [2π,2π]。我们能隐隐感觉到, W 0 W_0 W0 的谱的位置。画一下图可以感受到。

W 0 = { g ( t ) ; g ^ ( ω ) 支撑在特定区间 } W_0 = \{g(t);\hat g(\omega) \text{支撑在特定区间}\} W0={g(t);g^(ω)支撑在特定区间}

所谓的正交,就是在频域上没有公共的部分,是吧。

正交小波基的构造

有了上述的准备,我们现在想办法把这个直和分解的 W j W_j Wj写出来,再来看看它是不是满足正交小波的要求。

考虑 V 0 V_0 V0 V 1 V_1 V1空间的两个函数 f 0 f_0 f0 f 1 f_1 f1,他们可以写为各自空间中基的一组线性组合,

f 0 ( t ) = ∑ n = − ∞ + ∞ α n ϕ ( t − n ) f 1 ( t ) = ∑ n = − ∞ + ∞ β n ϕ 1 , n ( t ) \begin{array}{l} f_{0}(t)=\sum_{n=-\infty}^{+\infty} \alpha_{n} \phi(t-n) \\ f_{1}(t)=\sum_{n=-\infty}^{+\infty} \beta_{n} \phi_{1, n}(t) \end{array} f0(t)=n=+αnϕ(tn)f1(t)=n=+βnϕ1,n(t)

f 0 f_0 f0 做傅里叶变换,得到

f ^ 0 ( ω ) = [ ∑ n = − ∞ + ∞ α n e − i n ω ] ϕ ^ ( ω ) \hat{f}_{0}(\omega)=\left[\sum_{n=-\infty}^{+\infty} \alpha_{n} e^{-i n \omega}\right] \hat{\phi}{(\omega)} f^0(ω)=[n=+αneinω]ϕ^(ω)

我们很容易可以判断得出来,这里的系数是一个周期为 2 π 2\pi 2π 关于 ω \omega ω 的函数,后面的 ϕ ^ \hat{\phi} ϕ^是一个 [ − π , π ] [-\pi,\pi] [π,π]上的特征函数,相当于是一个滤波器,对前面的这个周期函数做了一个 [ − π , π ] [-\pi,\pi] [π,π] 上的截断。同样地,我们来看一下 f 1 f_1 f1 的傅里叶变换,

f ^ 1 ( ω ) = [ ∑ n = − ∞ + ∞ β n ′ e − i w 2 n ] ϕ ^ ( ω 2 ) \hat f_1 (\omega) =\left[ \sum_{n=-\infty}^{+\infty} \beta_{n}^{\prime} e^{ -i \frac{w}{2} n} \right]\hat \phi \left(\frac{\omega}{2}\right) f^1(ω)=[n=+βnei2wn]ϕ^(2ω)

我们并不在乎这里的系数,所以索性用了 β n ′ \beta_n ' βn来表示。这里可以看到,系数是一个周期为 4 π 4\pi 4π 的函数,同样也是用了一个特征函数去截断,这其实是可以看做是一个低通滤波器进行滤波的结果。使得它的频谱支撑在 [ − 2 π , 2 π ] [-2\pi,2\pi] [2π,2π]之间。

从这里你能猜想到什么?我们能想到的是, W 0 W_0 W0 的频谱,应该也是某个走起为 2 π 2 \pi 2π的函数,被一个低通滤波器滤波的结果。是的,你的这个猜测无限正确。

ψ ( t ) ∈ W 0 \psi(t) \in W_{0} ψ(t)W0,则有

ψ ^ ( ω ) = ϕ ^ ( ω 2 ) − ϕ ^ ( ω ) \hat{\psi}(\omega)=\hat{\phi}\left(\frac{\omega}{2}\right)-\hat{\phi}(\omega) ψ^(ω)=ϕ^(2ω)ϕ^(ω)

我们可以画个图来说明, W j W_{j} Wj W j + 1 W_{j+1} Wj+1的时间伸缩平移关系。容易知道,

L 2 ( R ) = ⨁ j = − ∞ + ∞ W j L^{2}(\mathbb{R})=\bigoplus_{j=-\infty}^{+\infty} W_{j} L2(R)=j=+Wj

ψ ( t ) \psi(t) ψ(t) 的整数平移是一个标准正交系。
ψ ( t ) \psi(t) ψ(t) 的整数平移是一个 W 0 W_0 W0标准正交系。
ψ ( t ) \psi(t) ψ(t) 的整数平移和 V 0 V_0 V0的标准正交基,放在一块,构成了 V 1 V_1 V1的标准正交基。

利用函数 ϕ ( ω ) \phi(\omega) ϕ(ω) ϕ ( ω 2 ) \phi\left(\frac{\omega}{2}\right) ϕ(2ω) 的图形性质,可以直接得到小波函数之傅里叶变换 ψ ^ ( ω ) \hat \psi (\omega) ψ^(ω) 的解析公式和小波函数 ψ ( x ) \psi(x) ψ(x) 图形。图中给出了函数 ϕ ( x ) \phi(x) ϕ(x) 和小波函数 ψ ( x ) \psi(x) ψ(x) 的图形。

在这里插入图片描述

小波函数的时域和频域表达式在下面给出。小波函数的频域表达式是

ψ ^ ( ω ) = ϕ ^ ( ω 2 ) − ϕ ^ ( ω ) = { 0 ∣ ω ∣ ≤ π 1 π ≤ ∣ ω ∣ ≤ 2 π 0 2 π ≤ ∣ ω ∣ \hat \psi(\omega)=\hat \phi\left(\frac{\omega}{2}\right)-\hat \phi(\omega)=\left\{\begin{array}{lr} 0 & \quad|\omega| \leq \pi \\ 1 & \pi \leq|\omega| \leq 2 \pi \\ 0 & 2 \pi \leq|\omega| \end{array}\right. ψ^(ω)=ϕ^(2ω)ϕ^(ω)=010ωππω2π2πω

在时间域可表示为,

ψ ( t ) = 2 ϕ ( 2 t ) − ϕ ( x ) = sin ⁡ ( 2 t π ) − sin ⁡ ( t π ) t π \psi(t)=2 \phi(2 t)-\phi(x)=\frac{\sin (2 t \pi)-\sin (t \pi)}{t \pi} ψ(t)=2ϕ(2t)ϕ(x)=tπsin(2tπ)sin(tπ)

它是 L 2 ( R ) L^2(R) L2(R) 上的一个正交小波,称为香农小波。构造出香农小波,这是 meyer 的巨大贡献。

仿照构造 Shannon 小波的方法,可以得到构造正交小波的一般方法,即正交多分辨分析。多分辨分析 Morlet 做的工作很多。

正交多分辨分析

定义 设 { V j ; j ∈ Z } \left\{V_{j} ; j \in Z\right\} {Vj;jZ} L ( R ) L(R) L(R)上的一列闭子空间, ϕ ( x ) \phi(x) ϕ(x) L 2 ( R ) L^{2}(R) L2(R) 中 的一个函数,如果它们满足如下的五个条件,即
(1) 单调性:
V j ⊂ V j + 1 , ∀ j ∈ Z V_{j} \subset V_{j+1}, \quad \forall j \in Z VjVj+1,jZ
(2) 唯一性:
⋂ j ∈ Z V j = { 0 } \bigcap_{j \in Z} V_{j}=\{0\} jZVj={0}
(3) 稠密性:
( ⋃ j ∈ Z V j ) ‾ = L 2 ( R ) \overline{\left(\bigcup_{j \in Z} V_{j}\right)}=L^{2}(R) jZVj=L2(R)
(4) 伸缩性:
f ( x ) ∈ V j ⇔ f ( 2 x ) ∈ V j + 1 ∀ j ∈ Z f(x) \in V_{j} \Leftrightarrow f(2 x) \in V_{j+1} \quad \forall j \in Z f(x)Vjf(2x)Vj+1jZ
(5) 可构造性:
{ ϕ ( x − n ) ; n ∈ Z } \{\phi(x-n) ; n \in Z\} {ϕ(xn);nZ}
构成子空间 V 0 V_{0} V0 的标准正交基。

那么,称 { { V j ; j ∈ Z } ; ϕ ( x ) } \left\{\left\{V_{j} ; j \in Z\right\} ; \phi(x)\right\} {{Vj;jZ};ϕ(x)} L 2 ( R ) L^{2}(R) L2(R) 上的一个正交多分辨分析(MRA,Multi-Resolution Analysis)。

由多分辨分析的定义,容易得到一个重要结果,即函数族
{ ϕ j , n ( x ) = 2 j 2 ϕ ( 2 j x − n ) ; n ∈ Z } \left\{\phi_{j, n}(x)=2^{\frac{j}{2}} \phi\left(2^{j} x-n\right) ; n \in Z\right\} {ϕj,n(x)=22jϕ(2jxn);nZ}
V j V_{j} Vj 空间的标准正交基。以后将要讨论的是如何由这个正交多分辨分析去构造 L 2 ( R ) L^{2}(R) L2(R) 上的一个正交小波 ψ ( x ) \psi(x) ψ(x) ,使
{ 2 j 2 ψ ( 2 j x − k ) ; ( j , k ) ∈ Z × Z } \left\{2^{\frac{j}{2}} \psi\left(2^{j} x-k\right) ;(j, k) \in Z \times Z\right\} {22jψ(2jxk);(j,k)Z×Z}
构成 L 2 ( R ) L^{2}(R) L2(R) 的标准正交小波基。这就是多分辨分析的内容。

  • 7
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值