正交多分辨分析2
4. 正交小波的构造
在正交多分辨分析1里我们基于尺度方程和小波方程的频域形式获得了低通滤波器 H ( w ) H(w) H(w)和带通滤波器 G ( w ) G(w) G(w)的性质,如下:
∣ H ( w ) ∣ 2 + ∣ H ( w + π ) ∣ 2 = 1 |H(w)|^{2}+|H(w+\pi)|^{2}=1 ∣H(w)∣2+∣H(w+π)∣2=1 ∣ G ( w ) ∣ 2 + ∣ G ( w + π ) ∣ 2 = 1 |G(w)|^{2}+|G(w+\pi)|^{2}=1 ∣G(w)∣2+∣G(w+π)∣2=1 H ( w ) G ∗ ( w ) + H ( w + π ) G ∗ ( w + π ) = 0 H(w)G^{*}(w)+H(w+\pi)G^{*}(w+\pi)=0 H(w)G∗(w)+H(w+π)G∗(w+π)=0
可以将上述三个性质归纳为两个位于信号空间 L 2 ( 0 , 2 π ) × L 2 ( 0 , 2 π ) L^{2}(0,2\pi)\times L^{2}(0,2\pi) L2(0,2π)×L2(0,2π)上的两个二维正交单位向量的关系: a ⃗ = ( H ( w ) , H ( w + π ) ) \vec{a}=\left ( H(w),H(w+\pi)\right ) a=(H(w),H(w+π))和 b ⃗ = ( G ( w ) , G ( w + π ) ) \vec{b}=\left ( G(w),G(w+\pi)\right ) b=(G(w),G(w+π)),其中每一个维度取值于信号空间 L 2 ( 0 , 2 π ) L^{2}(0,2\pi) L2(0,2π)。
∣ a ⃗ ∣ = ∣ b ⃗ ∣ = 1 |\vec{a}|=|\vec{b}|=1 ∣a∣=∣b∣=1 a ⃗ ⊥ b ⃗ \vec{a} \perp \vec{b} a⊥b换句话讲, { a ⃗ , b ⃗ } \{\vec{a},\vec{b}\} { a,b}构成信号空间 L 2 ( 0 , 2 π ) × L 2 ( 0 , 2 π ) L^{2}(0,2\pi)\times L^{2}(0,2\pi) L2(0,2π)×L2(0,2π)上的一组O.N.B,这一点也说明了由这组基组成的矩阵为酉矩阵。 M ( w ) = [ H ( w ) H ( w + π ) G ( w ) G ( w + π ) ] \bf {M}(\it w)= \left[ \begin{matrix} H(w) & H(w+\pi) \\ G(w) & G(w+\pi) \end{matrix} \right ] M(w)=[H(w)G(w)H(w+π)G(w+π)]
由滤波器性质可以得到: M ( w ) M ∗ ( w ) = [ 1 0 0 1 ] \bf {M}(\it w) \bf {M^{*}}(\it w)=\left[ \begin{matrix} 1 & 0 \\ 0& 1 \end{matrix} \right ] M(w)M∗(w)=[1001]即 M ( w ) \bf {M}(\it w) M(w)为酉矩阵。
由上述关系,我们可以由低通滤波器 H ( w ) H(w) H(w)构造带通滤波器 G ( w ) G(w) G(w),一种构造方法是令: G ( w ) = e − i w H ^ ( w + π ) G(w)=e^{-iw}\hat{H}(w+\pi) G(w)=e−iwH^(w+π)容易验证上述构造方法满足上述酉矩阵的要求。进而通过小波方程来构造正交小波函数,这也就是MRA理论给出的一套系统的完整的构造正交小波的方法。归纳如下:
- 根据MRA的理论,需要先找到一个满足 ( { V j , j ∈ Z } , ϕ ( t ) ) (\{V_{j},j\in \mathbb{Z}\},\phi(t)) ({ Vj,j∈Z},ϕ(t))为 L 2 ( R ) L^{2}(\mathbb{R}) L2(R)上的一个MRA的尺度函数 ϕ ( t ) \phi(t) ϕ(t)。
- 通过 ϕ ( t ) \phi(t) ϕ(t)在 V 1 V_{1} V1的投影序列 { h n ; n ∈ Z } : h n = ∫ − ∞ ∞ ϕ ( t ) 2 ϕ ∗ ( 2 t − n ) d t \{h_{n};n\in \mathbb{Z}\}:h_{n}=\int_{-\infty}^{\infty}\phi(t)\sqrt{2}\phi^{*}(2t-n)dt { hn;n∈Z}:hn=∫−∞∞ϕ(t)2ϕ∗(2t−n)dt
- 求得低通滤波器 H ( w ) : H ( w ) = ∑ n ∈ Z 1 2 h n e − i n w H(w):H(w)=\sum\limits_{n\in \mathbb{Z}}\frac{1}{\sqrt{2}}h_{n}e^{-inw} H(w):H(w)=