相关性分析

本文介绍了概率论和统计学中的相关系数概念,详细列举了适用于不同类型数据的各种相关系数,包括Pearson相关系数、Spearman等级相关系数等,并通过实例展示了如何使用这些系数来衡量变量间的线性关系强度和方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在概率论和统计学中,相关(Correlation,或称相关系数或关联系数),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。

对于不同测量尺度的变数,有不同的相关系数可用:

  • Pearson相关系数(Pearson’s r):衡量两个等距尺度或等比尺度变数之相关性。是最常见的,也是学习统计学时第一个接触的相关系数。

  • 净相关(英语:partial correlation):在模型中有多个自变数(或解释变数)时,去除掉其他自变数的影响,只衡量特定一个自变数与因变数之间的相关性。自变数和因变数皆为连续变数。

  • 相关比(英语:correlation ratio):衡量两个连续变数之相关性。

  • Gamma相关系数:衡量两个次序尺度变数之相关性。

  • Spearman等级相关系数:衡量两个次序尺度变数之相关性。

  • Kendall等级相关系数(英语:Kendall tau rank correlation coefficient):衡量两个人为次序尺度变数(原始资料为等距尺度)之相关性。

  • Kendall和谐系数:衡量两个次序尺度变数之相关性。

  • Phi相关系数(英语:Phi coefficient):衡量两个真正名目尺度的二分变数之相关性。

  • 列联相关系数(英语:contingency coefficient):衡量两个真正名目尺度变数之相关性。

  • 四分相关(英语:tetrachoric correlation):衡量两个人为名目尺度(原始资料为等距尺度)的二分变数之相关性。

  • Kappa一致性系数(英语:K coefficient of agreement):衡量两个名目尺度变数之相关性。

  • 点二系列相关系数(英语:point-biserial correlation):X变数是真正名目尺度二分变数。Y变数是连续变数。

  • 二系列相关系数(英语:biserial correlation):X变数是人为名目尺度二分变数。Y变数是连续变数。

吸烟与死亡相关分析:

 a=c(500,150,380,170,1100,350,1100,460,230,60,490,240,250,90,300,110,510,250,1300,200)
 x=matrix(a,10,2,byrow=T)
 plot(x,pch=20,main="吸烟死亡人数随烟消费量变化图",xlab='不同地区的烟消费量',ylab='吸烟死亡人数')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值