SPSS相关性分析

一、pearson

适应于:

* 适用于定距、定比类型的变量。检测用t统计量:其中统计量t服从自由度(n-2)的分布【变量就是n,加入有10个变量,自由度就是10-2=8】

* 变量必须是成对的数据

* 两个变量为线性关系

* 变量属于正态分布

1 .温度与湿度正相关

变量视图表格里面输入数据

输入数据视图表格

两个表格输入结束后,点击 分析–>相关–>双变量

选项——选择平均值和标准差、叉积偏差和协方差(为了后面表格更丰富而已)——继续

皮尔逊——双尾检验——确定

分析结果如图,温度与湿度相关系数为0.961,说明存在显著的正向线性相关性。

2、销售额和价格负相关

例题:探究某种商品的销售额是否与价格有关

销售额价格
2.0046.00
3.0042.00
4.0041.00

清除掉数据视图就可以,然后加入新的数据

分析——相关——双变量——把销售额和价格放在右边的变量框里

选项——选择平均值和标准差、叉积偏差和协方差(为了后面表格更丰富而已)——继续

皮尔逊——双尾检验——确定

由图可知,皮尔逊为-0.930,属于高度负相关

通过双尾检验,如果大于0.05,表示存在偶然性误差,不通过检验

二、卡方检验

适应于:定类与定类;定类与定序

1、性别与吸烟的关系类型1

1.2分别代表男生和女生,1.0代表吸烟与不吸烟

性别吸烟
11
11
20
20

输入数据视图

输入变量视图

找到 分析——描述统计——交叉表

把性别和吸烟分别放在行与列中,然后选择卡方,选择Phi和克莱姆V(这里可以任意选择,无非就是多了几组数据集),选择继续,选择确定

显著性检验是0.079,大于0.05,所以吸烟与性别不存在关系。(小于0.05,表示有关系;大于0.05表示没有关系)

2、性别与吸烟的关系类型2

与第一个不同的是,第二种用频数来区分

吸烟(人数)不吸烟(人数)
男性155
女性317

输入数据视图

数据——个案加权

选中个案加权系数,把频数拉过来,点击确定

后面在做分析——描述统计——交叉表等步骤,与上面的步骤一样。可以看到显著性检验的数值为0.000,所以吸烟与性别高度相关。

三、Eta系数检测

适用于

定类与定距,定类与定序

1、例题1:探究某种药物用量程度是否与疼痛感有关

服用药物5毫克用1表示,10毫克用2表示

(疼痛感定距变量,药量只有两种为定类变量,也可以为定序变量)

药量疼痛感
19
15
215
2

22

先输入变量视图数据,在输入数据视图数据

分析——描述统计——交叉表

一般行表示因变量,列表示自变量,所以把疼痛感放进行,药量放进列

统计——相关性——继续——确定

phi大于0.5,就是相关。phi为0.910,所以为高度相关

同时,皮尔逊R为0.675,phi大于皮尔逊意味着不是严格的线性关系,而是非线性关系

四、Spearman与Kendall检验

适用于

定序与定序

定序与定距

1、例题1:用的销售额与价格的数据进行的Spearman分析

输入数据视图、变量视图的数据

分析——相关——双变量——选择斯皮尔曼

数据可得到,负相关

2、销售额与价格的Kendall分析

其他步骤都一样

分析——相关——双变量——勾选Kendall

五、偏相关分析

控制变量,研究其他两个变量的关系

 1、土壤侵蚀量、降雨强度、降雨量

两个数据表

分析——相关——偏相关

土壤侵蚀量、降雨量 放在变量——降雨强度 放在控制

选项——选中平均值和标准差、零阶相关性——继续

双尾——确定

在控制变量的情况下,土壤侵蚀量与降雨量的关系更密切了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值