一、pearson
适应于:
* 适用于定距、定比类型的变量。检测用t统计量:其中统计量t服从自由度(n-2)的分布【变量就是n,加入有10个变量,自由度就是10-2=8】
* 变量必须是成对的数据
* 两个变量为线性关系
* 变量属于正态分布
1 .温度与湿度正相关
先在变量视图表格里面输入数据
在输入数据视图表格
两个表格输入结束后,点击 分析–>相关–>双变量
选项——选择平均值和标准差、叉积偏差和协方差(为了后面表格更丰富而已)——继续
皮尔逊——双尾检验——确定
分析结果如图,温度与湿度相关系数为0.961,说明存在显著的正向线性相关性。
2、销售额和价格负相关
例题:探究某种商品的销售额是否与价格有关
销售额 | 价格 |
2.00 | 46.00 |
3.00 | 42.00 |
4.00 | 41.00 |
清除掉数据视图就可以,然后加入新的数据
分析——相关——双变量——把销售额和价格放在右边的变量框里
选项——选择平均值和标准差、叉积偏差和协方差(为了后面表格更丰富而已)——继续
皮尔逊——双尾检验——确定
由图可知,皮尔逊为-0.930,属于高度负相关
通过双尾检验,如果大于0.05,表示存在偶然性误差,不通过检验
二、卡方检验
适应于:定类与定类;定类与定序
1、性别与吸烟的关系类型1
1.2分别代表男生和女生,1.0代表吸烟与不吸烟
性别 | 吸烟 |
1 | 1 |
1 | 1 |
2 | 0 |
2 | 0 |
输入数据视图
输入变量视图
找到 分析——描述统计——交叉表
把性别和吸烟分别放在行与列中,然后选择卡方,选择Phi和克莱姆V(这里可以任意选择,无非就是多了几组数据集),选择继续,选择确定
显著性检验是0.079,大于0.05,所以吸烟与性别不存在关系。(小于0.05,表示有关系;大于0.05表示没有关系)
2、性别与吸烟的关系类型2
与第一个不同的是,第二种用频数来区分
吸烟(人数) | 不吸烟(人数) | |
男性 | 15 | 5 |
女性 | 3 | 17 |
输入数据视图
数据——个案加权
选中个案加权系数,把频数拉过来,点击确定
后面在做分析——描述统计——交叉表等步骤,与上面的步骤一样。可以看到显著性检验的数值为0.000,所以吸烟与性别高度相关。
三、Eta系数检测
适用于
定类与定距,定类与定序
1、例题1:探究某种药物用量程度是否与疼痛感有关
服用药物5毫克用1表示,10毫克用2表示
(疼痛感定距变量,药量只有两种为定类变量,也可以为定序变量)
药量 | 疼痛感 |
1 | 9 |
1 | 5 |
2 | 15 |
2 | 22 |
先输入变量视图数据,在输入数据视图数据
分析——描述统计——交叉表
一般行表示因变量,列表示自变量,所以把疼痛感放进行,药量放进列
统计——相关性——继续——确定
phi大于0.5,就是相关。phi为0.910,所以为高度相关
同时,皮尔逊R为0.675,phi大于皮尔逊意味着不是严格的线性关系,而是非线性关系
四、Spearman与Kendall检验
适用于
定序与定序
定序与定距
1、例题1:用的销售额与价格的数据进行的Spearman分析
输入数据视图、变量视图的数据
分析——相关——双变量——选择斯皮尔曼
数据可得到,负相关
2、销售额与价格的Kendall分析
其他步骤都一样
分析——相关——双变量——勾选Kendall
五、偏相关分析
控制变量,研究其他两个变量的关系
1、土壤侵蚀量、降雨强度、降雨量
两个数据表
分析——相关——偏相关
土壤侵蚀量、降雨量 放在变量——降雨强度 放在控制
选项——选中平均值和标准差、零阶相关性——继续
双尾——确定
在控制变量的情况下,土壤侵蚀量与降雨量的关系更密切了