计算快速幂

这应该是个简单的小算法,作用是求a的b次幂,按照正常的思路,就是累乘b次a

int reminder(int base, int mi)
{
    int rem = 1;
    while (mi--)
        rem *= base;
    return rem;
}

朴实无华的O(n),平平淡淡的TLE。
要优化,举个7的10次方的例子

7^10 = 7*7*7*7*7*7*7*7*7*7//九次运算
等于49的五次方
49*49*49*49*49//六次运算(第一次是把底数平方)
快了一些,而且接下来还可以优化
49^5 = 49^4 * 49^1//这样的拆分,又出现了偶数次幂
又可以等于
2401^2 * 49//四次运算
还可以继续拆分成5764801^1 * 49

这样的二分思想可以用递归完成

int reminder(int base, int mi)
{
    if (mi == 0) return 1;
    else if (mi % 2 == 1)
    {
        return reminder(base, mi - 1) * base;
    }
    else if(mi % 2 == 0)
    {
    //这里很关键,用temp保存这个返回值而不是直接返回这个函数的平方,后者的时间复杂度会退化成O(n)
        int temp = reminder(base, mi / 2);
        return temp * temp;
        /*上面两行也可以写成
        return reminder(base*base,mi/2);
         */
    }
}

如果觉得内存消耗太大,可以用循环完成

int reminder(int base, int mi)
{
    int rem = 1;
    while (mi)
    {
        if (mi % 2 == 0)
        {
            mi /= 2;
            base = base * base;
        }
        mi--;
        rem *= base;
    }
    return rem;
}

幂运算经常伴随着炸int和炸long long,一般这时候出题人会让你mod一个1e9+7或者1e9+9,每一步都mod一下这个数就好了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值