这应该是个简单的小算法,作用是求a的b次幂,按照正常的思路,就是累乘b次a
int reminder(int base, int mi)
{
int rem = 1;
while (mi--)
rem *= base;
return rem;
}
朴实无华的O(n),平平淡淡的TLE。
要优化,举个7的10次方的例子
7^10 = 7*7*7*7*7*7*7*7*7*7//九次运算
等于49的五次方
49*49*49*49*49//六次运算(第一次是把底数平方)
快了一些,而且接下来还可以优化
49^5 = 49^4 * 49^1//这样的拆分,又出现了偶数次幂
又可以等于
2401^2 * 49//四次运算
还可以继续拆分成5764801^1 * 49
这样的二分思想可以用递归完成
int reminder(int base, int mi)
{
if (mi == 0) return 1;
else if (mi % 2 == 1)
{
return reminder(base, mi - 1) * base;
}
else if(mi % 2 == 0)
{
//这里很关键,用temp保存这个返回值而不是直接返回这个函数的平方,后者的时间复杂度会退化成O(n)
int temp = reminder(base, mi / 2);
return temp * temp;
/*上面两行也可以写成
return reminder(base*base,mi/2);
*/
}
}
如果觉得内存消耗太大,可以用循环完成
int reminder(int base, int mi)
{
int rem = 1;
while (mi)
{
if (mi % 2 == 0)
{
mi /= 2;
base = base * base;
}
mi--;
rem *= base;
}
return rem;
}
幂运算经常伴随着炸int和炸long long,一般这时候出题人会让你mod一个1e9+7或者1e9+9,每一步都mod一下这个数就好了。