排列与组合读书笔记

公式贴不出来呢。。郁闷 这里给个原书的电子版地址好了:下载书

排列与组合

3.1四个基本的计数原理

加法原理,乘法原理,减法原理,除法原理

以上四种原理是基本...

大量的计数问题呈现如下的类型:

Ⅰ)对元素的有序的摆放数或有序的选择数进行计数

a)    没有重复任何元素

b)    允许元素重复(但可能是有限的)

Ⅱ)对元素的无序的摆放数或无序的选择数进行计数

a) 没有重复任何元素

b) 允许元素重复(但可能是有限的)

在Ⅰ中考虑顺序的摆放或者选择称为排列,而Ⅱ中与顺序无关的摆放或选择叫做组合

只要你对一个任务的选择数的答案用到“依赖于”(或类似词语),则乘法原理就不能使用.二是可能不存在一个固定的顺序来执行这些任务,但是通过改变任务的执行顺序,一个问题可能会更容易地通过乘法原理而得到解决.要牢记一个经验法则:让最有约束性的选择优先。

3.2集合的排列

定理3.2.1:对于正整数n和r,r≤n有

P(n,r)=n*(n-1)*…*(n-r+1)

定理3.2.2:n个元素的集合的循环r-排列的个数由

给出.特别地,n个元素的循环排列的个数是(n-1)!

:用20个不同颜色的念珠串成一条项链,能够做成多少不同的项链?

20个念珠共有20!种不同的排列.由于每条项链都可以旋转而不必改变念珠的排列,项链的数目最多为20!/20=19!.又由于项链还可以翻转过哦来而念珠的排放未改动,因此项链做的总数是19!/2

为什么是反转而未改动呢

:对于一个项链来说是一样的,但是在排列的时候是旋转的不到的

3.3集合的组合

定理3.3.1:对于0≤r≤n,  因此

推论3.3.2:对于0≤r≤n, 数 有许多重要的和便利的性质

定理3.3.3:我们有 这个值等于n元素集的所有组合的总个数

3.4多重集的排列

定理3.4.1:令S是一个多重集,它有k个不同类型的元素,每一个元素都有无限重复次数.那么,S的r-排列的个数为k^r

定理3.4.2:令S是一个多重集,有k个不同类型的元素,各元素的重数分别为n1,n2,…,nk.设S的大小为n=n1+n2+…+nk.则S的排列数等于

 

如果多重集S只有两种类型的元素a1和a2,它们对应的重数分别是n1和n2,其中n=n1+n2,那么按照定理3.4.2集S的排列数为

因此把 看作是n个元素的n1-组合数,也可看成是具有两种类型的元素且他们重数分别是n1和n-n1的多重集的排列的个数

在定理3.4.2中出现的数 还有另外一种解释,它涉及把元素的一个集合划分成指定大小的部分的问题,其中,这些部分现在就有了指派给它们的标签.为了理解最后的短语的含义,我们举出下一个例子:

:考虑4个元素集合{a,b,c,d},他要被划分成两个集合,每个的大小为2.如果这两部分没有做标签,那么存在三种不同的划分:

{a,b},{c,d};{a,c},{b,d};{a,d},{b,c}

然而,如果这些部分被做了标签,那么让我们用颜色红和蓝标记它们.此时,划分的个数更多;实际上,由于可以标签红和蓝两种方式指派给划分的每个部分,因此有6个划分.例如,对于划分{a,b},{c,d},有红盒{a,b},蓝盒{c,d} 和 蓝盒{a,b},红盒{c,d}

在一般情况下,我们标记部分B1,B2,…,Bk(看成颜色1,颜色2,…,颜色k),并且把这些部分看成是盒子.

定理3.4.3:令n是一个正整数,并令n1,n2,…,nk是正整数且n=n1+n2+…+nk.将n个元素的集合划分成k个被做标签的盒字B1,B2,…,Bk的方式数为

其中盒1含有n1个元素,盒2含有n2个元素,…,盒k含有nk个元素.如果这些盒子不被做标签,那么划分的个数为

:在8*8棋盘上对于8个非攻击型车有多少可能的放法?(即两车能够互相攻击当且仅当它们位于棋盘的同一行或同一列)

我们给棋盘上的每个方块一对坐标(i,j).整数i指出方块的行数,整数j指出方块的列数.因此,i和j是1和8之间的整数.由于棋盘是8*8,棋盘上就能有8个车它们不能彼此攻击,每行上必然恰好有一个车.因此,这些车必然占据8个方块而且具有坐标(1,j1), (2,j2), (3,j3), (4,j4),(5,j5), (6,j6), (7,j7), (8,j8)中没有两个是相等的.更准确地说,j1,j2,…,j8必须是{1,2,…,8}的一个排列.反过来,如果j1,j2,…,j8是{1,2,…,8}的一个排列.那么将车放在坐标(1,j1), (2,j2), (3,j3), (4,j4), (5,j5), (6,j6), (7,j7), (8,j8)的各个方块上,就得到盘上的8个非攻击型车.因此,在8*8棋盘上的8个非攻击型车与{1,2,…,8}的排列之间就有一个一一对应,既然{1,2,…,8}有8!个排列,因此将8个车放到8*8棋盘上使得他们具有非攻击型的方法也有8!个排列.因此答案是8!

    在上面的讨论中我们实际上已经间接假设这些车是彼此没有区别的.因此,唯一的关键在于哪些方块被这些车占据.如果我们有8个不同的车,比如,用8种不同的颜色分别给8个车涂色,那么我们还要考虑在8个被占据方块的每一个方块里放的是哪个车.让我们这样假设,我们有8个不同颜色的车.在决定哪8个方块要被这些车占据后(8!种可能),我们现在还要决定:在每个所占据的方块上的车是什么颜色?观察从第一行到第8行的这些车时我们看到8种颜色的一个排列.因此,决定了哪8个方块要被这些车占据后(8!种可能),就必须决定8种颜色的哪个排列(8!种排列)需要指定.于是,在8*8棋盘上具有8种不同颜色的8个非攻击性车的放置方法数等于8!*8!=(8!)^2

现在假设有1个红(R)车,3个蓝(B)车,4个黄(Y)车.假设同颜色的车彼此没有区别.现在当我们从第1行到第8行贯彻这些车时看到多重集{1·R,3·B,4·Y}颜色的一个排列.根据定理3.4.2,这个多重集的排列个数等于 .因此,在8*8棋盘上放置1个红车,3个蓝车,4个黄车并使他们彼此不攻击的方法数等于:

前面的例子中的推理相当普遍且导致下面的定理

定理3.4.4:有n个车共k种颜色,第一种颜色的车有个n1个,第二种颜色的车有n2个,…,第k中颜色的车有nk个.将这些车摆放在n*n棋盘上,使没有车能够互相攻击的摆放方法数等于:

注意,如果这些车的颜色都不相同(k=n且所有的ni=1),则公式的答案为(n!)^2

如果这些车都涂成相同的颜色(k=1且n1=n),则公式的答案为n!

令S是n-元素的多重集,各元素的重数分别等于n1,n2,…,nk,且使得n=n1+n2+…+nk.定理3.4.2提供了计算S的n-排列的个数的简单公式.如果r<n,则一般就不存在计算S的r-排列的个数的简单公式.但是,通过使用生成函数的技巧也可以得到问题的解.

3.5多重集的组合

我们首先计算一个多重集的r-组合数,该多重集的所有元素的重复数均为无限的

定理3.5.1:令S为具有k种类型元素的一个多重集,每种元素均具有无限的重复数.则S的r-组合的个数等于

:一家面包房生产8种面饼圈.如果一盒内装有一打炸面饼圈,那么你能够买到多少种不同的盒装炸面饼圈?

    假设面包房现有大量各种面饼圈,由于我们假设盒中的顺序与购买者无关,因此是一个组合问题.不同盒装的数量等于每种元素都可提供无限多个数的8种类型元素的多重集的12-组合数.根据定理3.5.1,这个数等于

在定理3.5.1的证明中已经看到,在具有k中不同类型元素的多重集S的r-组合与方程x1+x2+…+xk=r的非负整数解之间存在一一对应.在这种对应中,xi代表用于r-组合的第i种元素的个数.对每种元素在r-组合中出现的次数施加限制等价与对xi施加限制.

:方程:x1+x2+x3+x4=20的整数解的个数是多少?其中x1≥3,x2≥1,x3≥0,x4≥5我们引入新的变量:y1=x1-3,y2=x2-1,y3=x3,y4=x4-5

此时方程变为:y1+y2+y3+y4=11

诸xi的下界能够满足当且仅当这些yi是非负的.新方程的非负整数解的个数是

含有k种元素且重复数为n1,n2,…,nk的多重集S={n1·a1, n2·a2,…,nk·ak}的r-组合数的计数问题要更困难。S的r-组合数和方程:x1+x2+…+xk=r的整数解的个数相同,其中0≤x1≤n1,0≤x2≤n2,…,0≤xk≤nk现在我们有诸xi的上界,但它们不能以与下届相同的方式来处理。上界问题将由容斥原理给出方法


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值