图的一些基本知识:图,邻居,度矩阵,邻接矩阵

本文深入浅出地介绍了图论的基础概念,包括图的表示、邻接矩阵、度矩阵等,详细解析了无向图与有向图的区别,以及如何通过矩阵形式表示顶点之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

      本文介绍了一些图论的基础知识,包括图的表示、邻接矩阵、度矩阵等(边不带权值的情况),本文中某些图片或者知识的参考/来源已列于本文最后。关联矩阵,拉普拉斯矩阵参考另一篇博客https://blog.csdn.net/luzaijiaoxia0618/article/details/104720948

图(Graph)

      图用G=(V, E)表示,V中元素为顶点(vertex),E中元素为边(edge)。图中边为无序对时为无向图,为有序对时为有向图。
      以下为一个无向图的例子。
在这里插入图片描述

邻居(Neighborhood)

      顶点 vi 的邻居 N(i) :
在这里插入图片描述
      无向图中,如果顶点vi是顶点vj的邻居,那么顶点vj也是顶点vi的邻居。

度矩阵(Degree)

     度矩阵是对角阵,对角上的元素为各个顶点的度。顶点vi的度表示和该顶点相关联的边的数量。
     无向图中顶点vi的度d(vi)=N(i)。

在这里插入图片描述
     有向图中,顶点vi的度分为顶点vi的出度和入度,即从顶点vi出去的有向边的数量和进入顶点vi的有向边的数量。

邻接矩阵(Adjacency)

     邻接矩阵表示顶点间关系,是n阶方阵(n为顶点数量)。
     邻接矩阵分为有向图邻接矩阵和无向图邻接矩阵。无向图邻接矩阵是对称矩阵,而有向图的邻接矩阵不一定对称。
在这里插入图片描述
注意,对于有向图,vivj是有方向的,即vi -> vj 。

  • Figure 2.1 的度矩阵和邻接矩阵如下:
    在这里插入图片描述
  • 下图中无向图G5 和有向图G6 的邻接矩阵分别为A1 和A2 。
    在这里插入图片描述

参考文献

[1] Mesbahi M, Egerstedt M. Graph theoretic methods in multiagent networks[M]. Princeton University Press, 2010.
[2] https://baike.baidu.com/pic/%E9%82%BB%E6%8E%A5%E7%9F%A9%E9%98%B5/9796080/0/0865b518da34aa1135fa4112?fr=lemma&ct=single#aid=0&pic=0865b518da34aa1135fa4112

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值