分支定价算法(branch and price, B&P)

前言

简述分支定价算法原理,如有错误可私信,谢谢。部分截图来自本人汇报所用PPT以及参考文献。以下均以最小化问题为例。

分支定界算法

分支定价算法(branch and price, B&P)=分支定界(branch and bound, B&B)+列生成(column generation, CG, 线性规划)。其中列生成算法用于求节点的下界,即节点松弛模型的最优解。列生成算法因其求解方法的本质会大大减少计算量,求解的并非节点松弛模型本身,而是受限制的松弛模型,即减少了决策变量规模。分支定价算法其他步骤与分支定界算法相同,只是下界计算由列生成算法完成。如下为流程图。
在这里插入图片描述

列生成算法

在这里插入图片描述
列生成算法所求解的问题大都决策变量规模非常大,相应地其约束系数也非常多(如上图每个xj对应一组{a1j,…,aij,…,anj}),不可能同时表达出来一起求解,典型问题就是切卷纸的问题,顾客需要不同长度的卷纸若干,需要对固定长度的卷纸进行裁剪。对卷纸而言可行的裁剪方案的约束条件是不超过卷纸的固定长度(可能会有巨多种),对整个问题而言,就是找到一个解决方案(方案由裁剪方案与裁剪数量组成,如裁剪方案1裁剪5卷纸,裁剪方案2裁剪3卷纸可得到最终结果)得到顾客想要的若干不同长度卷纸,并使用最少的原固定长度的卷纸。
在这里插入图片描述
列生成特点为无需列出所有可行的裁剪方案(恢复成多)再进行求解,只需先列出几个裁剪方案然后随着求解这几个裁剪方案下的原问题(主问题,Master Problem)的受限问题(Restricted Master Problem),再不断迭代增加对问题有益的裁剪方案最终求出松弛问题的最优解。

步骤

(如上图)
1、根据原问题,选取几个可行列(可行裁剪方案),得到受限问题模型
2、通过受限问题RMP获得检验数以构建子问题的方程,子问题的约束条件即为可行列的生成条件(裁剪方案需要满足卷纸固定长度的限制,例如5米长的卷纸,只能裁剪成3米1个,2米1个;不能是4米1个,2米1个)
子问题表达:
在这里插入图片描述
子问题目标函数中检验数pi来自于RMP问题,通过RMP的基向量和非基向量划分后的对应参数c_B和B计算得到(参考单纯形法计算过程,参考[1])。需要将RMP问题标准化得到基变量非基变量,将其对应参数计算检验数,并用以求解子问题,得到新的可行列加入RMP问题。
在这里插入图片描述
3、求解子问题,子问题的解若对应目标函数(检验数)小于0,那么将解y(可行列)加入受限问题,循环步骤2~3,否则若子问题的解对应目标值不小于0,则循环结束
4、求当前受限问题RMP的最优解,即分支定价中该节点的下界

注:建议配合给出的参考[1]中的链接一起理解,步骤2~3的依据是单纯形法中进基出基的判断方法(进基出基后可得到子问题目标值中的检验数),当基确定后(通过每列的检验数判断),RMP问题最优解则可得出,也就是分支定价过程中该节点的下界。

参考文献

[1] 列生成:https://www.cnblogs.com/dengfaheng/p/11249879.html
https://www.jianshu.com/p/8be0083886ed
https://www.cnblogs.com/cruelty_angel/p/10493527.html

[2] 分支定界:https://www.cnblogs.com/dengfaheng/p/11225612.html
[3] 分支定价:https://my.oschina.net/u/4354879/blog/3432783
李播.基于分支定价的手术计划调度研究

<think>好的,用户想了解分支定价算法的原理和应用,特别是关于它的实现和IT优化方面的内容。首先,我需要回顾一下分支定价算法的基础知识,确保自己理解正确。分支定价算法属于组合优化中的一种精确算法,通常用于解决整数规划问题,特别是那些规模较大且难以用传统分支定界法处理的问题。它结合了分支定界和列生成(列生成)技术,通过动态生成变量来避免枚举所有可能的变量,从而提高效率。 接下来,我需要整理原理部分。分支定价的核心在于将问题分解为主问题和子问题。主问题处理当前选择的变量集合,而子问题负责生成新的变量(列),这些变量有可能改善当前解。这个过程类似于列生成,但结合了分支定界来处理整数约束。需要解释清楚列生成是如何减少计算量的,以及分支步骤如何帮助处理整数解的需求。 然后是应用领域。用户提到IT优化,可能指的是在信息技术领域的资源分配、调度等问题。比如云计算中的任务调度、网络资源分配等。此外,运输和物流中的车辆路径问题、生产计划中的排程问题也是常见的应用场景。需要举例说明这些应用,并引用相关文献或案例,比如引用中的优化方法在机器学习中的应用,但这里可能需要更具体的IT优化例子。 实现部分要分步骤讲解。首先是主问题的建模,通常使用线性规划的松弛形式;然后是子问题的定价,用来寻找可以加入主问题的新列,这通常涉及求解一个辅助优化问题;接着是分支策略,如何根据当前解进行分支,比如选择分数变量进行分支;最后是停止条件,比如找到最优整数解或达到时间限制。需要确保步骤清晰,并且语言易懂,避免过于专业的术语,但又要准确。 在IT优化中的应用案例可能需要更具体的例子,比如在数据中心资源调度中使用分支定价算法来优化服务器资源的分配,减少能耗同时满足服务级别协议(SLA)。或者网络流量管理中的路径优化,确保带宽利用率最大化。这部分需要结合现有的研究或实际应用案例,可能参考引用中的优化方法在机器学习中的应用,但需要调整到IT领域。 可能用户还会关心该算法与其他优化算法的比较,比如遗传算法、粒子群算法等元启发式方法。需要指出分支定价是精确算法,适合需要最优解的场景,而元启发式方法适合大规模、复杂问题但接受近似解的情况。引用中的比较粒子群和遗传算法的内容可以作为对比点,说明分支定价的优势和局限。 另外,需要注意用户提到的实现讲解,可能需要伪代码或简要的代码结构说明,但用户示例中的Python代码是快速排序,所以是否提供代码示例?不过分支定价的实现较为复杂,可能更适合用步骤描述而非具体代码。但如果有简单的模型示例,比如线性规划部分,可以适当展示。 最后,生成相关问题时要围绕分支定价的相关扩展,比如与其他算法的结合(引用3提到模拟退火与其他算法结合)、性能优化、实际应用中的挑战等。确保问题能够引导用户进一步深入学习。 现在需要检查是否有遗漏点,比如原理中的列生成和分支定界的结合机制,是否解释清楚;应用案例是否具体;实现步骤是否逻辑连贯。同时,确保引用正确,比如引用1提到优化方法在机器学习的应用,可以关联到分支定价在IT优化中的潜在应用。引用3提到结合其他算法,可以生成相关问题中的算法融合问题。 总结回答结构:先介绍分支定价算法的定义和组成,然后详细讲解原理,包括主问题、子问题、分支策略和停止条件。接着是应用领域,分点列出运输、生产、IT优化等,并给出具体例子。实现部分分步骤说明,可能辅以伪代码或流程说明。最后是IT优化中的案例,如资源调度、路径优化。相关问题部分包括算法比较、优化方法、挑战等。</think>### 分支定价算法原理与应用详解 #### 一、算法原理 分支定价算法Branch and Price)是**组合优化领域中的精确算法**,结合了**分支定界法**和**列生成技术**,专门用于求解大规模整数规划问题。其核心思想是通过动态生成变量(列)来避免穷举所有可能解,同时利用分支策略处理整数约束。 1. **主问题(Master Problem)** 主问题是一个线性规划松弛模型,仅包含部分变量。例如,在车辆路径问题中,主问题可能只包含部分可行路径的集合: $$\min \sum_{r \in R} c_r x_r \quad \text{s.t.} \quad \sum_{r \in R} a_{ir} x_r \geq 1 \ (\forall i), \ x_r \geq 0$$ 其中$R$是当前生成的列集合,$a_{ir}$表示路径$r$是否覆盖客户$i$[^1]。 2. **子问题(Pricing Problem)** 子问题通过求解一个辅助优化问题,生成能改善主问题目标函数的新列。例如,在车辆路径问题中,子问题可能是寻找一条成本最低且未被主问题包含的路径: $$\min \left( c_r - \sum_{i} \pi_i a_{ir} \right)$$ 其中$\pi_i$是主问题的对偶变量。 3. **分支策略** 当主问题的松弛解中存在分数变量时,算法通过分支操作将问题划分为子问题(例如强制$x_r=0$或$x_r=1$),逐步逼近整数解。 #### 二、实现步骤 1. **初始化** 生成初始列集合(例如简单可行解)。 2. **迭代求解** - **列生成阶段**:交替求解主问题和子问题,直到无法生成更优的列。 - **分支阶段**:根据分数变量创建分支节点,递归处理每个子问题。 3. **终止条件** 当所有节点处理完毕且目标函数值无法进一步优化时,输出最优解。 #### 三、应用场景 1. **运输与物流** - **车辆路径问题(VRP)**:优化配送路线以最小化运输成本。 - **航班调度**:分配飞机和机组资源[^2]。 2. **生产计划** - **车间作业调度**:在有限资源下安排生产任务。 3. **IT优化** - **云计算资源分配**:动态分配虚拟机资源以降低能耗,例如通过列生成建模服务器-任务匹配关系。 - **网络流量管理**:优化数据传输路径,提升带宽利用率。 #### 四、IT优化案例 以**数据中心任务调度**为例: - **问题**:将多个计算任务分配到服务器,满足资源限制且最小化延迟。 - **分支定价实现**: - 主问题:选择当前任务分配方案集合。 - 子问题:生成新的低延迟分配模式(例如利用对偶变量指导搜索)。 - 分支策略:对未满足整数约束的任务-服务器分配进行分支。 #### 五、与其他算法的对比 | **算法类型** | **分支定价** | **遗传算法/粒子群[^3]** | |--------------------|----------------------------|-----------------------------| | 解的类型 | 精确解 | 近似解 | | 适用规模 | 中等规模 | 超大规模 | | 实现复杂度 | 高(需建模主/子问题) | 中等 | ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值