大模型算法,入职两个月,不想干了...

很多同学觉得,我学了这么多AI算法,还学了大模型训练、微调、推理优化,最后入职就是写写Prompt,调调开源模型,干一些杂活儿,就像下面这个同学一样。

不过这里我想说两点:

第一,新人进公司其实 90% 都不会直接让你干模型调优的活,大部分可能还是配环境,搭链路,处理数据。这些都干熟以后,才会让你跑一些模型实验。其中比较出色的同学,才会慢慢让你们接触线上业务。

第二,刚毕业的同学,尽量不要选择国企(家里有矿除外),大模型的岗位,或者说其他 IT 方向的技术岗,在国企都是学不到东西的,这个懂得都懂。国企比较适合在互联网打拼多年之后躺平养老,刚毕业的同学尽量还是去互联网学技术,刷背景,攒能力。上面这个兄弟,刚毕业选择去国企,结果发现学不到东西,算是跳坑里了。

继续来看今天的内容,这段时间我不是在集中招聘嘛,面了很多候选人,清华,北大,华五,包括一些海外的学校都有,所以也准备给大家集中分享一些面试的情况,帮助大家备战秋招。

就拿昨天面的一个复旦女生来说吧,大模型方向,简历还不错,做过 RAG 项目,因此围绕着 RAG 问了一些问题。

01

如何提高大模型的准确性和可靠性并且使回答可验证?

我们可以使用 RAG 来做,通过在生成回答之前,从外部的知识库中检索相关信息来优化输出。

RAG 包括三个步骤:检索、增强和生成

首先是检索(Retrieval),当用户提出一个查询时,我们会从知识库中检索相关的信息。知识库可以是外部的数据库,也可以是企业内部的专有知识库,这一步可以让我们获取最新最相关的内容。

接下来,我们将检索到的相关信息作为上下文增强(Augmented)到 LLM 中,这一步是关键,因为它为模型提供了生成答案所需的具体背景信息,减少了模型产生错误或虚假信息的风险。

最后我们将增强后的上下文和用户查询一起输入到 LLM 中,模型会基于这些信息生成(Generation)一个适合该上下文的答案。这样生成的答案不仅准确,还可以根据检索到的上下文进行验证。

02

RAG如何解决LLM的局限性?

LLMs 虽然训练在大量数据上,并使用数十亿个参数来生成回答,但有一些局限。

例如当没有答案时,模型可能会生成虚假信息;当用户需要最新、具体的回答时,模型可能会提供过时或通用的信息;以及由于术语混淆导致的错误回答。

RAG 通过引入外部的、相关的知识来增强模型的回答解决了这些问题。例如通过检索最新的数据,我们可以提供最新的回答;通过引用具体的文档,我们可以减少错误和虚假信息,并提供可以验证的回答。

这里你可以边画图边给面试官讲:

用户提出查询(User Query),然后我们从知识库中检索相关信息,得到相关的上下文,然后将"Instruction + context"输入到大模型中,最后大模型基于此生成答案,这样就确保了回答的准确性和可靠性,并使回答基于具体的上下文,可以进行验证。

03

RAG的工作流程,能画图解释一下吗?

RAG 的过程可以分为三个主要阶段:数据准备,索引,产品上线服务

我们可以结合这张图来详细解释一下:

首先是数据准备,这个阶段我们从原始数据开始,对数据进行预处理和分块,将大块的数据或文本,切分成更小更容易管理的"块",方便处理和理解。

大模型应用开发中,分块对于提高从向量数据库中检索到的内容的相关性非常重要,因为我们会用 LLM 来做内容的 embedding。

如上图,我们从"Raw data"(原始数据)开始,经过"Pre-processing"(预处理)和"Chunking"(分块),将数据分成更小的块。

然后是索引阶段,我们会将这些数据块通过 embedding 模型进行嵌入,生成 document embedding。它们会存储在一个向量数据库中。

这个步骤非常关键,因为它决定了后续检索的效率和准确性。看图中的 Embedding 部分,我们将分块的数据进行 embedding,生成的“Document embedding”存储在向量数据库中。

然后是产品上线服务阶段,当我们收到用户的查询时,会对这个查询做 embedding,然后使用 query embedding 来从向量数据库中检索相关的文档或上下文,常用的相似性度量方法包括余弦相似度或欧几里得距离。

检索到的上下文和原始查询会一起输入到大语言模型(LLM)中,模型会生成一个适合该上下文的答案。

用户提出"Query",我们对其进行"Query embedding",并从向量数据库中检索相关的 document embedding。这些检索到的上下文和查询一起作为输入提供给 LLM,生成最终的答案。

总结一下:

  • 数据准备:原始数据开始,经过预处理和分块

  • 索引:将分块数据通过 Embedding 生成“Document embedding,存储在向量数据库中

  • 产品上线服务:当有用户查询时,对查询进行“Query embedding,并使 用query embedding 从向量数据库中检索相关文档。检索到的上下文和查询一起作为输入提供给 LLM,生成最终的答案

04

说一下使用RAG的好处?

第一,可以提供最新且准确的响应,RAG 利用最新的外部数据源,而不仅仅依赖于静态的训练数据。这样即使模型的训练数据已经过时,通过 RAG 我们仍然能够提供最新的信息和回答。

第二,减少模型幻觉,由于 LLM 有时会在没有足够信息的情况下生成虚假或错误的回答,RAG 通过引入相关的外部知识来减少这种风险,降低了出现“幻觉”回答的概率。

第三,提供领域特定的相关回答,RAG 可以让 LLM 利用特定领域的专有数据来生成回答。对于需要访问专有知识库或特定行业数据的应用来说非常有用。

例如医疗领域,RAG 可以帮助模型使用最新的医学研究和病例数据来提供专业的建议和回答。

此外,RAG 相比其他需要重新训练模型的方法成本更低操作更简单,重新训练一个大模型需要大量的资源和时间,而 RAG 只需要更新知识库并检索相关信息即可。

所以 RAG 特别适合那些需要频繁更新数据的场景,如新闻资讯和动态行业数据。

同时你这里也可以给面试官提一些 RAG 的限制和挑战,比如知识检索依赖相似度检索而非精确检索,因此可能出现检索到的文档与问题不太相关。

比如向量数据库技术还不成熟,数据量大时速度和性能存在挑战等等,体现出你的技术广度。

05

如果想用垂域数据自定义大模型,有哪些方式?

incontext learning,通过设计特定提示(零样本和少样本)来引导 LLM 的行为,比如构建聊天机器人。速度快,不需要训练,但是比起微调不太容易控制

RAG,将大模型和外部知识检索结合,比如构建基于专有知识和动态数据集的机器人。

内容可以动态更新,且减少模型幻觉,但是推理成本会增加,并且还需要外部知识库和数据库(比如向量数据库)

微调(Fine-Tuning),将预训练的模型适应到特定数据集或者特定领域,然后根据特定领域的任务,对模型进行调整和优化,微调可以做到精细化控制,但是需要数千条特定领域或任务的指令,计算成本高。

最后是预训练,也就是从头训练 LLM,需要大型数据集(上亿级的 tokens)。

06

RAG和微调的区别?什么时候用微调而不是RAG?

RAG通过整合外部信息来改进语言处理,使模型能够更好理解查询上下文,生成更准确的回复。

而微调的目的则是利用有限的训练数据集,针对特定领域任务,对预先训练好的基础模型进行专门调整。

看下图 RAG 和微调的比较维度可以更加直观,如果我们需要倾向于获取外部知识,RAG 是首选。

另一方面,如果我们正在使用稳定的标记数据,并想要使模型更接近特定需求,则微调是更好的选择。

什么时候应该使用微调(Fine-tuning)而不是 RAG?生产中我们通常会先微调模型,再使用 RAG 来提高回答的质量和相关性。

哪些情况需要微调模型呢?

比如业务有特定需求,或者模型需要处理特定领域语言如行业术语/技术术语,或者需要提高模型在特定任务上的性能,或者需要使响应更加符合事实,减少有害内容。这些情况下我们需要微调模型。

总结来说,微调能够更细致地定制模型,使其在特定领域任务上表现更优,而 RAG 提供了一种灵活动态更新的方法,在实际生产中,两者一般会结合使用。

学习专场

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值